Advertisement

Spline Algorithms for Deconvolution and Inversion of Heat Equation

  • Amir Z. Averbuch
  • Pekka Neittaanmaki
  • Valery A. Zheludev
Chapter

Abstract

In this chapter, we present algorithms based on Tikhonov regularization for solving two related problems: deconvolution and inversion of heat equation. The algorithms, which utilize the SHA technique, provide explicit solutions to the problems in one and two dimensions.

References

  1. 1.
    A. Averbuch, V. Zheludev, Spline-based deconvolution. Signal Process. 89(9), 1782–1797 (2009)Google Scholar
  2. 2.
    J. Cai, S. Osher, Z. Shen, Split Bregman methods and frame based image restoration. Multiscale Model. Simul. 8(2):337–369 (2009/10)Google Scholar
  3. 3.
    D. Donoho, I. Johnstone, Ideal spatial adaptation via wavelet shrinkage. Biometrika 81(3), 425–455 (1994) NULLGoogle Scholar
  4. 4.
    J. Fourier. Théorie analytique de la chaleur. in Firmin Didot, (1822). (Cambridge University Press, Paris, 2009) (Reissued)Google Scholar
  5. 5.
    A.N. Tikhonov, Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl. 4(4), 1035–1038 (1963)Google Scholar
  6. 6.
    A.N. Tikhonov, V.Y. Arsenin, Solutions of ill-posed problems (Wiley, New York, 1977)Google Scholar
  7. 7.
    N. Wiener, Extrapolation, interpolation, and smoothing of stationary time series with engineering applications (Wiley, New York, 1949)Google Scholar
  8. 8.
    W. Yin, S. Osher, D. Goldfarb, J. Darbon, Bregman iterative algorithms for \(l_1\)-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)Google Scholar
  9. 9.
    V. A. Zheludev, in Proceedings of the International Conference Approximation Theory (1990), Colloquium Mathematicum Society of J Bolyai, ed. by J. Szabados, K. Tandoi (eds.). Spline-Operational Calculus and Inverse Problem for Heat Equation, vol. 58 (Kecskemét, Hungary, 1991), pp. 763–783Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Amir Z. Averbuch
    • 1
  • Pekka Neittaanmaki
    • 2
  • Valery A. Zheludev
    • 1
  1. 1.School of Computer ScienceTel Aviv UniversityTel AvivIsrael
  2. 2.Mathematical Information TechnologyUniversity of JyväskyläJyväskyläFinland

Personalised recommendations