Advertisement

Periodic Polynomial Splines

  • Amir Z. Averbuch
  • Pekka Neittaanmaki
  • Valery A. Zheludev
Chapter

Abstract

In this chapter the spaces of periodic polynomial splines, which are introduced in Sect.  3.2.2, are discussed in more details. It is shown that the periodic exponential splines generate a specific form of harmonic analysis in these spaces. A family of generators of the spaces of periodic splines is presented.

References

  1. 1.
    A. Aldroubi, M. Unser, M. Eden, Cardinal spline filters: stability and convergence to the ideal sinc interpolator. Signal Process. 28(2), 127–138 (1992)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    G. Battle, A block spin construction of ondelettes. I. lemarié functions. Commun. Math. Phys. 110(4), 601–615 (1987)CrossRefMathSciNetGoogle Scholar
  3. 3.
    P. G. Lemarié. Ondelettes à localisation exponentielle. J. Math. Pures Appl. (9), 67(3), 227–236 (1988)Google Scholar
  4. 4.
    P. Neittaanmäki, V. Rivkind, V. Zheludev, A wavelet transform based on periodic splines and finite element method, ed. by M. Kvectorrívectorzek, P. Neittaanmäki, R. Stenberg, Finite Element Methods (Jyväskylä, 1993), vol. 164 of Lecture Notes in Pure and Appl. Math. (New York, Dekker, 1994), pp. 325–334Google Scholar
  5. 5.
    P. Neittaanmäki, V. Rivkind, V. Zheludev, Periodic spline wavelets and representation of integral operators. Preprint 177, University of Jyväskylä, Department of Mathematics (1995)Google Scholar
  6. 6.
    C.E. Shannon, W. Weaver, The Mathematical Theory of Communication (The University of Illinois Press, Urbana, IL, 1949)MATHGoogle Scholar
  7. 7.
    V. Zheludev, An operational calculus connected with periodic splines. Soviet. Math. Dokl. 42(1), 162–167 (1991)MathSciNetGoogle Scholar
  8. 8.
    V. Zheludev, Periodic splines and the fast Fourier transform. Comput. Math. Math. Phys. 32(2), 149–165 (1992)MATHMathSciNetGoogle Scholar
  9. 9.
    V. Zheludev, Periodic splines, harmonic analysis, and wavelets, ed. by Y. Y. Zeevi, R. Coifman, Signal and Image Representation in Combined Spaces, vol. 7 of Wavelet Anal. Appl. (Academic Press, San Diego, CA, 1998), pp. 477–509Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Amir Z. Averbuch
    • 1
  • Pekka Neittaanmaki
    • 2
  • Valery A. Zheludev
    • 1
  1. 1.School of Computer ScienceTel Aviv UniversityTel AvivIsrael
  2. 2.Mathematical Information TechnologyUniversity of JyväskyläJyväskyläFinland

Personalised recommendations