Skip to main content

Supercritical Water Oxidation (SCWO) for Wastewater Treatment

  • Chapter
  • First Online:
Near-critical and Supercritical Water and Their Applications for Biorefineries

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 2))

Abstract

Water behaves as an acidic and alkaline precursor for acidic or basic reactions, since the formation of both H3O+ and OH ions takes place in accordance with the self-dissociation of water at near-critical and above supercritical (Tc = 374 °C, Pc = 22.1 MPa) conditions. Therefore, supercritical water is considered both as a solvent for organic materials and as a reactant at processes such as the oxidative treatment of wastewaters, the gasification of aqueous organic solutions and the production of fine metal oxide particles. Supercritical water oxidation is a very efficient method for wastewater treatment, which is based on oxidation of organic compounds in aqueous media above critical temperature and pressure conditions of pure water.

In this chapter, general information on supercritical water oxidation processes is given, effects of operational parameters such as temperature, pressure, reaction time, waste and oxidant concentration on waste treatment are discussed, and applied scientific methods and practical solutions to possible operational problems such as corrosion, salt deposition and carbonization are compiled in detail. Treatment of industrial wastewaters such as olive mill, textile dyehouse, cheese whey and commercial pesticide with high environmental hazard potential are subjected and evaluated in order to understand the effects of reactor temperature, organics and oxidant concentrations, residence time and reactor pressure. Hydrothermal degradation and oxidation kinetics of wastewater are stracked in terms of total organic carbon (TOC) and analyzed, followed by discussion of supercritical water oxidation rate models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolla V, Hauschild W, Hoffmeister O, Jung D, Lock G, Pavlovic A, Scheller A, Tronet V. Sustainable development in the European Union, 2009 monitoring of the EU sustainable development strategy. Luxemburg: Eurostat, European Commission; 2009.

    Google Scholar 

  2. McMurry J. Organic chemistry. 5th ed. Mason: Thomson Learning; 1999.

    Google Scholar 

  3. Carey FA. Organic chemistry. 4th ed. Boston: McGraw-Hill Higher Education; 2000.

    Google Scholar 

  4. Tang WZ. Physicochemical treatment of hazardous wastes. London: CRC Press; 2004.

    Google Scholar 

  5. Weber R, Watson A, Forter M, Oliaei F. Persistent organic pollutants and landfills – a review of past experiences and future challenges. Waste Manag Res. 2011;29:107–21.

    Article  Google Scholar 

  6. Lin H, Ma X. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator. Waste Manag. 2012;32:561–7.

    Article  MathSciNet  Google Scholar 

  7. Modell M. Detoxification and disposal of hazardous organic chemicals by processing in supercritical water. Research Report, US Army Medical Research and Development Command, Maryland, USA; 1985.

    Google Scholar 

  8. Ledesma EB, Kalish MA, Nelson PF, Wornat MJ, Mackie JC. Formation and fate of PAH during the pyrolysis and fuel-rich combustion of coal primary tar. Fuel. 2000;79:801–14.

    Article  Google Scholar 

  9. Donlagic J, Levec J. Oxidation of an azo dye in subcritical aqueous solutions. Ind Eng Chem Res. 1997;36:3480–6.

    Article  Google Scholar 

  10. Shende RV, Levec J. Wet oxidation of refractory low molecular mass carboxylic acids. Ind Eng Chem Res. 1999;38:3830–7.

    Article  Google Scholar 

  11. Poling BE, Prausnitz JM, O’Connell JP. The properties of gases and liquids. 5th ed. New York: McGraw-Hill Higher Education; 2001.

    Google Scholar 

  12. New Scientist, Environment, Found: The hottest water on Earth, http://www.newscientist.com/article/dn14456-found-the-hottest-water-on-earth.html

  13. BBS News, Science/Nature, Drilling into a hot volcano, http://news.bbc.co.uk/2/hi/sci/tech/4846574.stm

  14. Oshima Y. Oxidation and hydrolysis reactions in supercritical water. In: Arai Y, Sako T, Takebayashi Y, editors. Supercritical fluids: molecular interactions, physical properties, and new applications. Berlin: Springer; 2002.

    Google Scholar 

  15. Krammer P, Vogel H. Hydrolysis of esters in subcritical and supercritical water. J Supercrit Fluids. 2000;16:189–206.

    Article  Google Scholar 

  16. Zhou N, Krishnan A, Vogel F, Peters WA. A computational model for supercritical water oxidation of toxic organic wastes. Adv Environ Res. 2000;4:79–95.

    Article  Google Scholar 

  17. Rose A, Rose E. The condensed chemical dictionary. New York: Reinhold Publishing Co.; 1961.

    Google Scholar 

  18. Hoechst AG. Kleineswörterbuch der anwendungstechnik. Stuttgart: Klett; 1975.

    Google Scholar 

  19. Loppinet-Serani A, Aymonier C, Cansell F. Supercritical water for environmental technologies. J Chem Technol Biotechnol. 2010;85:583–9.

    Article  Google Scholar 

  20. Armellini FJ, Tester JW. Solubility of sodium chloride and sulfate in sub- and supercritical water vapor from 450-550 °C and 100–250 bar. Fluid Phase Equilib. 1993;84:123–42.

    Article  Google Scholar 

  21. Franks F. Water: a comprehensive treatise. In: Franks F, editor. The physics and physical chemistry of water. New York: Plenum Press; 1972.

    Google Scholar 

  22. Wang T, Yang M, Xiang B, Shen Z. Investigation on the elimination of organic substances in urine by supercritical water oxidation. Space Med Med Eng. 1997;10:370–2.

    Google Scholar 

  23. Kobiro K, Sumoto K, Okimoto Y, Wang P. Saccharides as new hydrogen sources for one-pot and single-step reduction of alcohols and catalytic hydrogenation of olefins in supercritical water. J Supercrit Fluids. 2013;77:63–9.

    Article  Google Scholar 

  24. Fedyaeva ON, Vostrikov AA. Hydrogenation of bitumen in situ in supercritical water flow with and without addition of zinc and aluminum. J Supercrit Fluids. 2012;72:100–10.

    Article  Google Scholar 

  25. Lehr V, Sarlea M, Ott L, Vogel H. Catalytic dehydration of biomass-derived polyols in sub- and supercritical water. Catal Today. 2007;121:121–9.

    Article  Google Scholar 

  26. Anikeev VI, Yermakova A, Manion J, Huie R. Kinetics and thermodynamics of 2-propanol dehydration in supercritical water. J Supercrit Fluids. 2004;32:123–35.

    Article  Google Scholar 

  27. Sasaki M, Furukawa M, Minami K, Adschiri T, Arai K. Kinetics and mechanism of cellobiose hydrolysis and retro-aldol condensation in subcritical and supercritical water. Ind Eng Chem Res. 2002;41:6642–9.

    Article  Google Scholar 

  28. Brunner G. Near and supercritical water. Part II: Oxidative processes. J Supercrit Fluids. 2009;47:382–90.

    Article  Google Scholar 

  29. Kıpçak E, Akgün M. Oxidative gasification of olive mill wastewater as a biomass source in supercritical water: effects on gasification yield and biofuel composition. J Supercrit Fluids. 2012;69:57–63.

    Article  Google Scholar 

  30. Portela JR, Nebot E, de la Ossa EM. Kinetic comparison between subcritical and supercritical water oxidation of phenol. Chem Eng J. 2001;81:287–99.

    Article  Google Scholar 

  31. Kroschwitz JI, Seidel A. Kirk-Othmer encyclopedia of chemical technology. 5th ed. Michigan: Wiley-Interscience; 2004.

    Google Scholar 

  32. Yesodharan S. Supercritical water oxidation: an environmentally safe method for the disposal of organic wastes. Curr Sci. 2002;82:1112–22.

    Google Scholar 

  33. Shaw RW, Dahmen N. Destruction of toxic organic materials using super-critical water oxidation: current state of the technology. In: Kıran E, Debenedetti PG, Peters CJ, editors. Supercritical fluids–fundamentals and applications. Dordrecht: Kluwer Academic Publishers; 2000.

    Google Scholar 

  34. Marrone PA, Hodes M, Smith KA, Tester JW. Salt precipitation and scale control in supercritical water oxidation-part B: commercial/full-scale applications. J Supercrit Fluids. 2004;29:289–312.

    Article  Google Scholar 

  35. Marrone PA, Hong GT. Corrosion control methods in supercritical water oxidation and gasification processes. J Supercrit Fluids. 2009;51:83–103.

    Article  Google Scholar 

  36. Lee HC, In JH, Lee SY, Kim JH, Lee CH. An anti-corrosive reactor for the decomposition of halogenated hydrocarbons with supercritical water oxidation. J Supercrit Fluids. 2005;36:59–69.

    Article  Google Scholar 

  37. Prikopsky K, Wellig B, Von Rohr PR. SCWO of salt containing artificial wastewater using a transpiring-wall reactor: experimental results. J Supercrit Fluids. 2007;40:246–57.

    Article  Google Scholar 

  38. Xu DH, Wang SZ, Gong YM, Guo Y, Tang XY, Ma HH. A novel concept reactor design for preventing salt deposition in supercritical water. Chem Eng Res Des. 2010;88:1515–22.

    Article  Google Scholar 

  39. Vadillo V, García-Jarana MB, Sánchez-Oneto J, Portela JR, de la Ossa EM. Supercritical water oxidation of flammable industrial wastewaters: economic perspectives of an industrial plant. J Chem Technol Biotechnol. 2011;86:1049–57.

    Article  Google Scholar 

  40. Vogel F, DiNaro Blanchard JL, Marrone PA, Rice SF, Webley PA, Peters WA, Smith KA, Tester JW. Critical review of kinetic data for the oxidation of methanol in supercritical water. J Supercrit Fluids. 2005;34:249–86.

    Article  Google Scholar 

  41. Lin KS, Wang HP, Li MC. Oxidation of 2,4-dichlorophenol in supercritical water. Chemosphere. 1998;36:2075–83.

    Article  Google Scholar 

  42. Erkonak H, Söğüt OÖ, Akgün M. Treatment of olive mill wastewater by supercritical water oxidation. J Supercrit Fluids. 2008;46:142–8.

    Article  Google Scholar 

  43. Söğüt OÖ, Akgün M. Treatment of textile wastewater by SCWO in a tube reactor. J Supercrit Fluids. 2007;43:106–11.

    Article  Google Scholar 

  44. Söğüt OÖ, Akgün M. Removal of C.I. Basic Blue 41 from aqueous solution by supercritical water oxidation in continuous-flow reactor. J Ind Eng Chem. 2009;15:803–8.

    Article  Google Scholar 

  45. Söğüt OÖ, Kıpçak E, Akgün M. Treatment of whey wastewater by supercritical water oxidation. Water Sci Technol. 2011;63:908–16.

    Google Scholar 

  46. Shu HY, Chang MC. Pre-ozonation coupled with UV/H2O2 process for the decolorization and mineralization of cotton dyeing effluent and synthesized C.I. Direct Black 22 wastewater. J Hazard Mater. 2005;B121:127–33.

    Article  Google Scholar 

  47. Söğüt OÖ, Akgün M. Treatment of dyehouse waste-water by supercritical water oxidation: a case study. J Chem Technol Biotechnol. 2010;85:640–7.

    Article  Google Scholar 

  48. Sato T, Adschiri T, Arai K. Decomposition kinetics of 2-propylphenol in supercritical water. J Anal Appl Pyrolysis. 2003;70:735–46.

    Article  Google Scholar 

  49. Chen G, Lei L, Hu X, Yue PL. Kinetic study into the wet air oxidation of printing and dyeing wastewater. Sep Purif Technol. 2003;31:71–6.

    Article  Google Scholar 

  50. Akiya N, Savage PE. Roles of water for chemical reactions in high-temperature water. Chem Rev. 2002;102:2725–50.

    Article  Google Scholar 

  51. McNaught AD, Wilkinson A. IUPAC. Compendium of chemical terminology: the gold book. 2nd ed. Oxford: Blackwell Science; 1997.

    Google Scholar 

  52. Tiltscher H, Hoffmann H. Trends in high pressure chemical reaction engineering. Chem Eng Sci. 1987;42:959–77.

    Article  Google Scholar 

  53. Fogler HS. Elements of chemical reaction engineering. 2nd ed. Upper Saddle River: Prentice Hall International; 2006.

    Google Scholar 

  54. Chang KC, Li L, Gloyna EF. Supercritical water oxidation of acetic acid bu potassium permanganate. J Hazard Mater. 1993;33:51–62.

    Article  Google Scholar 

  55. Imamura SI, Hirano A, Kawabata N. Wet oxidation of acetic acid catalyzed by Co-Bi complex oxides. Ind Eng Chem Prod Res Dev. 1982;21:570–5.

    Article  Google Scholar 

  56. Son SH, Lee JH, Lee CH. Corrosion phenomena of alloys by subcritical and supercritical water oxidation of 2-chlophenol. J Supercrit Fluids. 2008;44:370–8.

    Article  Google Scholar 

  57. Comynis AE. Encyclopaedic dictionary of named processes in chemical technology. 3rd ed. Boca Raton: CRC Press; 2007.

    Book  Google Scholar 

  58. Green LA, Akgerman A. Supercritical CO2 extraction of soil-water slurries. J Supercrit Fluids. 1996;9:177–84.

    Article  Google Scholar 

  59. Park S, Gloyna EF. Statistical study of the liquefaction of used rubber tyre in supercritical water. Fuel. 1997;76:999–1003.

    Article  Google Scholar 

  60. Kriksunov LB, MacDonald DD. Corrosion testing and prediction in Supercritical water oxidation environments. ASME Heat Transf Div. 1995;317:281–8.

    Google Scholar 

  61. Kritzer P. Corrosion in high-temperature and supercritical water and aqueous solutions: a review. J Supercrit Fluids. 2004;29:1–29.

    Article  Google Scholar 

  62. Leusbrock I, Metz SJ, Rexwinkel G, Versteeg GF. The solubility of magnesium chloride and calcium chloride in near critical and supercritical water. J Supercrit Fluids. 2010;53:17–24.

    Article  Google Scholar 

  63. Aymonier C, Bottreau M, Berdeu B, Cansell F. Ultrasound for hydrothermal treatments of aqueous wastes: solution for overcoming salt precipitation and corrosion. Ind Eng Chem Res. 2000;39:4734–40.

    Article  Google Scholar 

  64. Vadillo V, García-Jarana MB, Sánchez-Oneto J, Portela JR, de la Ossa EJM. New feed system for water-insoluble organic and/or highly concentrated wastewaters in the supercritical water oxidation process. J Supercrit Fluids. 2012;72:263–9.

    Article  Google Scholar 

  65. Boock LT, Klein MT. Lumping strategy for modeling the oxidation of C1-C3 alcohols and acetic acid in high-temperature water. Ind Eng Chem Res. 1993;32:2464–73.

    Article  Google Scholar 

  66. Brock EE, Oshima Y, Savage PE, Barker JR. Kinetics and mechanism of methanol oxidation in supercritical water. J Phys Chem. 1996;100:15834–42.

    Article  Google Scholar 

  67. Li L, Chen P, Gloyna EF. Generalized kinetic model for wet oxidation of organic compounds. AIChE J. 1991;37:1687–97.

    Article  Google Scholar 

  68. Wagner W, Prub A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data. 2002;31:387–535.

    Article  Google Scholar 

  69. Peng D, Robinson DB. A new two-constant equation of state. Ind Eng Chem Fundam. 1976;15(1):59–64.

    Article  MATH  Google Scholar 

  70. Croiset E, Rice SF, Hanush RG. Hydrogen peroxide decomposition in supercritical water. AIChE J. 1997;43:2343–52.

    Article  Google Scholar 

  71. Sögüt OÖ, Yıldırım E, Akgün M. The treatment of wastewaters by supercritical water oxidation. Desalination Water Treat. 2011;26:131–8.

    Article  Google Scholar 

  72. Söğüt OÖ, Akgün M. Degradation of aqueous disperse orange 25 by supercritical water oxidation. Fresenius Environ Bul. 2008;17:864–71.

    Google Scholar 

  73. Rivas FJ, Gimeno O, Portela JR, de la Ossa EM, Beltrán FJ. Supercritical water oxidation of olive oil mill wastewater. Ind Eng Chem Res. 2001;40:3670–4.

    Article  Google Scholar 

  74. Chkoundali S, Alaya S, Launay JC, Gabsi S, Cansell F. Hydrothermal oxidation of olive oil mill wastewater with multi-injection of oxygen: simulation and experimental data. Environ Eng Sci. 2008;25:173–9.

    Article  Google Scholar 

  75. Cui B, Cui F, Jing G, Xu S, Huo W, Liu S. Oxidation of oily sludge in supercritical water. J Hazard Mater. 2009;165:511–7.

    Article  Google Scholar 

  76. Jimenez-Espadafor F, Portela JR, Vadillo V, Saánchez-Oneto J, Villanueva JAB, Garcıá MT, de la Ossa EJM. Supercritical water oxidation of oily wastes at pilot plant: simulation for energy recovery. Ind Eng Chem Res. 2001;50:775–84.

    Article  Google Scholar 

  77. Sánchez-Oneto J, Portela JR, Nebot E, de la Ossa EM. Hydrothermal oxidation: application to the treatment of different cutting fluid wastes. J Hazard Mater. 2007;144:639–44.

    Article  Google Scholar 

  78. Shanableha A. Generalized first-order kinetic model for biosolids decomposition and oxidation during hydrothermal treatment. Environ Sci Technol. 2005;39:355–62.

    Article  Google Scholar 

  79. Veriansyah B, Park TJ, Lim JS, Lee YW. Supercritical water oxidation of wastewater from LCD manufacturing process: kinetic and formation of chromium oxide nanoparticles. J Supercrit Fluids. 2005;34:51–61.

    Article  Google Scholar 

  80. Weijin G, Xuejun D. Degradation of landfill leachate using transpiring-wall supercritical water oxidation (SCWO) reactor. Waste Manag. 2010;30:2103–7.

    Article  Google Scholar 

  81. Holgate HR, Tester JW. Fundamental kinetics and mechanisms of hydrogen oxidation in supercritical water. Combust Sci Technol. 1993;88:369–97.

    Article  Google Scholar 

  82. Holgate HR, Webley PA, Tester JW, Helling RK. Carbon monoxide oxidation in supercritical water: the effects of heat transfer and the water-gas shift reaction on observed kinetics. Energy Fuel. 1992;6:586–97.

    Article  Google Scholar 

  83. Cui BC, Liu SZ, Cui FY, Jing GL, Liu XJ. Lumped kinetics for supercritical water oxidation of oily sludge. Process Saf Environ Prot. 2011;89:198–203.

    Article  Google Scholar 

  84. Tester JW, Webley PA, Holgate HR. Revised global kinetic measurements of methanol oxidation in supercritical water. Ind Eng Chem Res. 1993;32(1):236–9.

    Article  Google Scholar 

  85. Lehr V, Sarlea M, Ott L, Vogel H. Catalyticdehydration of biomass-derived polyols in sub- and supercritical water. Catal Today. 2007;121:121–9.

    Article  Google Scholar 

  86. Shin YH, Shin NC, Veriansyah B, Kim J, Lee YW. Supercritical water oxidation of wastewater from acrylonitrile manufacturing plant. J Hazard Mater. 2009;163:1142–7.

    Article  Google Scholar 

  87. Savage PE, Smith MA. Kinetics of acetic acid oxidation in supercritical water. Environ Sci Technol. 1995;1:216–21.

    Article  Google Scholar 

  88. Maharrey SP, Miller DR. Quartz capillary microreactor for studies of oxidation in supercritical water. AIChE J. 2001;5:1203–11.

    Article  Google Scholar 

  89. Koido K, Ishida Y, Kumabe K, Matsumoto K, Hasegawa T. Kinetics of ethanol oxidation in subcritical water. J Supercrit Fluids. 2010;55:246–51.

    Article  Google Scholar 

  90. Schanzenbacher J, Taylor JD, Tester JW. Ethanol oxidation and hydrolysis rates in supercritical water. J Supercrit Fluids. 2002;22:139–47.

    Article  Google Scholar 

  91. Ploeger JM, Madlinger AC, Tester JW. Revised global kinetic measurements of ammonia oxidation in supercritical water. Ind Eng Chem Res. 2006;45:6842–5.

    Article  Google Scholar 

  92. Veriansyah B, Kima JD, Lee JC, Lee YW. OPA oxidation rates in supercritical water. J Hazard Mater. 2005;B124:119–24.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support provided by The Scientific and Technological Research Council of Turkey (TUBITAK) through project 104M214 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesut Akgün .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Akgün, M., Söğüt, O.Ö. (2014). Supercritical Water Oxidation (SCWO) for Wastewater Treatment. In: Fang, Z., Xu, C. (eds) Near-critical and Supercritical Water and Their Applications for Biorefineries. Biofuels and Biorefineries, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8923-3_10

Download citation

Publish with us

Policies and ethics