The Neuronal Base of Perceptual Learning and Skill Acquisition

  • Mark W. GreenleeEmail author
Part of the Springer International Handbooks of Education book series (SIHE)


Procedural and perceptual learning are important processes involved in skill acquisition and the formation of expertise. This chapter provides an overview of recent research on the neuroscientific investigation of these different learning forms underlying the acquisition of skills. We focus on low-level processes in perception and motor control and how these low-level processes are improved by learning. Other forms of neural plasticity like adaptation, habituation, sensitization, conditioning and extinction are differentiated from procedural and perceptual learning. A brief introduction to the neuroanatomical basis of visual function is given. We next review the research on the cognitive neuroscience of these forms of learning with a focus on studies that use functional magnetic resonance imaging (fMRI). Recent results on dopaminergic and cholinergic processes underlying learning are discussed in the context of a top-down attention-gated model of perceptual learning. Finally an overview is given of research on skill acquisition and the implications of this research on the design of learning environments.


Perceptual learning Procedural learning Skill acquisition Functional magnetic resonance imaging (fMRI) Implicit memory Brain function Visual system 



The author would like to thank Sebastian M. Frank (Dartmouth College) for his critical and helpful comments. The author also acknowledges funding support from the Federal Ministry for Education and Research (BMBF, Project “Brain Plasticity and Perceptual Learning”) and the German Research Council (DFG, FOR 1075, Project GR988/22-2).


11C-raclopride positron emission tomography 

A brain imaging technique involving the radioactive isotope 11C combined with raclopride to label dopaminergic brain regions.

Anterior cingulum 

Cortical area in medial prefrontal cortex thought to process various aspects of attention and executive control.

Caudate nucleus 

A component of the subcortical basal ganglia involved in motor control, learning, memory and other forms of cognition.

Cholinesterase inhibitor 

Or acetylcholinesterase inhibitor is a chemical substance that inhibits acetylcholinesterase enzyme from breaking down acetylcholine thereby increasing cholinergic transmission.

Extrastriate visual cortex 

Secondary visual cortex beyond the striate (stripped) cortex representing area 17 (containing primary visual cortex).


Functional magnetic resonance imaging, a non-invasive, in-vivo brain imaging technique.

Fusiform gyrus 

Part of the ventral visual cortex involved in object and face recognition.


Lateral geniculate nucleus of the thalamus involved in visual processing with magno-, parvo- and koniocellular layers.

Laminae I–VI 

Six layers of the neocortex, where lamina I borders the pia mater and lamina VI the white matter.

Mid-cingulate/paracingulate cortex 

Parts of the cingular cortex in the medial neocortex.

Nucleus accumbens 

A dopaminergic structure in the midbrain thought to be involved in reward processing.

Nucleus basalis 

Nucleus basalis of Meynert: a group of neurons in the substantia innominate in the basal forebrain involved in cholinergic innervation of the cortex.

Occipito-temporal cortex 

Part of the ventral visual pathway at the junction between the occipital and temporal lobes.


Optic chiasma, a location in the brain where the optic nerves partially bifurcate.


A cholinesterase inhibitor that acts by interfering with the metabolism of acetylcholine.


Rapid-eye-movement sleep, a form of paradoxical sleep in which the person executes rapid eye movements during dream-like states.


Rapid serial presentation task, a visual task involving the presentation of a rapid sequence of images containing two or more targets that require a motor response from the participant.


Substantia nigra, a brain structure in the midbrain involved in motor control and reward processing.


Slow-wave sleep, stage 3 to 4 of (deep) sleep that is associated of low frequency EEG delta waves.


Voxel-based morphometry, a data analysis technique that determines statistical differences in grey and white matter voxel intensities. Used to measure cortical grey and white matter thickness.

Ventral striatum 

Part of the basal ganglia involving the nucleus accumbens, the olfactory tubercle, as well as the caudate nucleus and putamen.


Ventral tegmentum area, a dopaminergic structure in the midbrain involved in dopaminergic innervation and control of attention.


  1. Aeschbach, D., Cutler, A. J., & Ronda, J. M. (2008). A role for non-rapid-eye-movement sleep homeostasis in perceptual learning. The Journal of Neuroscience, 28(11), 2766–2772. doi: 10.1523/JNEUROSCI.5548-07.2008.CrossRefGoogle Scholar
  2. Allen, M., Dietz, M., Blair, K. S., van Beek, M., Rees, G., Vestergaard-Poulsen, P., et al. (2012). Cognitive-affective neural plasticity following active-controlled mindfulness intervention. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 32(44), 15601–15610.CrossRefGoogle Scholar
  3. Amiez, C., Neveu, R., Warrot, D., Petrides, M., Knoblauch, K., & Procyk, E. (2013). The location of feedback-related activity in the midcingulate cortex is predicted by local morphology. The Journal of Neuroscience, 33(5), 2217–2228.Google Scholar
  4. Bakin, J. S., & Weinberger, N. M. (1996). Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proceedings of the National Academy of Sciences of the United States of America, 93(20), 11219–11224.CrossRefGoogle Scholar
  5. Bao, S., Chan, V. T., & Merzenich, M. M. (2001). Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature, 412(6842), 79–83.CrossRefGoogle Scholar
  6. Beer, A. L., Vartak, D., & Greenlee, M. W. (2013). Nicotine facilitates memory consolidation in perceptual learning. Neuropharmacology, 64, 443–451.CrossRefGoogle Scholar
  7. Bernard, J. A., & Seidler, R. D. (2013). Cerebellar contributions to visuomotor adaptation and motor sequence learning: An ALE meta-analysis. Frontiers in Human Neuroscience, 7, 27. doi: 10.3389/fnhum.2013.00027.CrossRefGoogle Scholar
  8. Blakemore, C., & Campbell, F. W. (1969). On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. The Journal of Physiology, 203(1), 237–260.Google Scholar
  9. Cain, M. S., Landau, A. N., & Shimamura, A. P. (2012). Action video game experience reduces the cost of switching tasks. Attention, Perception, & Psychophysics, 74(4), 641–647.CrossRefGoogle Scholar
  10. Carew, T., Castellucci, V. F., & Kandel, E. R. (1979). Sensitization in Aplysia: Restoration of transmission in synapses inactivated by long-term habituation. Science (New York, NY), 205(4404), 417–419.CrossRefGoogle Scholar
  11. Carew, T. J., Walters, E. T., & Kandel, E. R. (1981). Classical conditioning in a simple withdrawal reflex in Aplysia californica. Journal of Neuroscience, 1(12), 1426–1437.Google Scholar
  12. Carey, L., Macdonell, R., & Matyas, T. A. (2011). SENSe: Study of the Effectiveness of Neurorehabilitation on Sensation: A randomized controlled trial. Neurorehabilitation and Neural Repair, 25(4), 304–313.CrossRefGoogle Scholar
  13. Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50(3), 1148–1167.CrossRefGoogle Scholar
  14. Castellucci, V. F., Carew, T. J., & Kandel, E. R. (1978). Cellular analysis of long-term habituation of the gill-withdrawal reflex of Aplysia californica. Science (New York, NY), 202(4374), 1306–1308.CrossRefGoogle Scholar
  15. Cheng, K., Waggoner, R. A., & Tanaka, K. (2001). Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron, 32(2), 359–374.CrossRefGoogle Scholar
  16. Cross, E. S., Kraemer, D. J. M., Hamilton, A. F. de C., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex (New York, NY: 1991), 19(2), 315–326.Google Scholar
  17. Daniel, R., & Pollmann, S. (2010). Comparing the neural basis of monetary reward and cognitive feedback during information-integration category learning. The Journal of Neuroscience, 30(1), 47–55.CrossRefGoogle Scholar
  18. Draganski, B., & May, A. (2008). Training-induced structural changes in the adult human brain. Behavioural Brain Research, 192(1), 137–142.CrossRefGoogle Scholar
  19. Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427(6972), 311–312.CrossRefGoogle Scholar
  20. Egerton, A., Mehta, M. A., Montgomery, A. J., Lappin, J. M., Howes, O. D., Reeves, S. J., et al. (2009). The dopaminergic basis of human behaviors: A review of molecular imaging studies. Neuroscience & Biobehavioral Reviews, 33(7), 1109–1132.CrossRefGoogle Scholar
  21. Fahle, M. (2005). Perceptual learning: Specificity versus generalization. Current Opinion in Neurobiology, 15(2), 154–160.CrossRefGoogle Scholar
  22. Fahle, M., & Poggio, T. (Eds.). (2002). Perceptual learning (p. 2002). Cambridge, MA: MIT Press.Google Scholar
  23. Fine, I., & Jacobs, R. A. (2002). Comparing perceptual learning tasks: A review. Journal of Vision, 2(2), 190–203.CrossRefGoogle Scholar
  24. Fitzgerald, M. B., & Wright, B. A. (2011). Perceptual learning and generalization resulting from training on an auditory amplitude-modulation detection task. The Journal of the Acoustical Society of America, 129(2), 898–906.CrossRefGoogle Scholar
  25. Frank, S. M., Reavis, E. A., Tse, P. U., & Greenlee, M. W. (2014). Neural mechanisms of feature conjunction learning: Enduring changes in occipital cortex after a week of training. Human Brain Mapping, 35, 1201–1211.Google Scholar
  26. Gais, S., & Born, J. (2004). Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation. Proceedings of the National Academy of Sciences of the United States of America, 101(7), 2140–2144. doi: 10.1073/pnas.0305404101.CrossRefGoogle Scholar
  27. Gibson, E. (1963). Perceptual learning. Annual Review of Psychology, 14, 29–56.CrossRefGoogle Scholar
  28. Gopher, D., Well, M., & Bareket, T. (1994). Transfer of skill from a computer game trainer to flight. Human Factors, 36(3), 387–405.Google Scholar
  29. Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534–537.CrossRefGoogle Scholar
  30. Green, C. S., & Bavelier, D. (2012). Learning, attentional control, and action video games. Current Biology: CB, 22(6), R197–R206.CrossRefGoogle Scholar
  31. Greenlee, M. W., & Heitger, F. (1988). The functional role of contrast adaptation. Vision Research, 28(7), 791–797.CrossRefGoogle Scholar
  32. Groves, P. M., & Thompson, R. F. (1970). Habituation: A dual-process theory. Psychological Review, 77(5), 419–450.CrossRefGoogle Scholar
  33. Hasselmo, M. E. (2006). The role of acetylcholine in learning and memory. Current Opinion in Neurobiology, 16, 710–715.CrossRefGoogle Scholar
  34. Herzog, M. H., & Fahle, M. (1997). The role of feedback in learning a vernier discrimination task. Vision Research, 37(15), 2133–2141.CrossRefGoogle Scholar
  35. Higuchi, S., Holle, H., Roberts, N., Eickhoff, S. B., & Vogt, S. (2012). Imitation and observational learning of hand actions: Prefrontal involvement and connectivity. NeuroImage, 59(2), 1668–1683.CrossRefGoogle Scholar
  36. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160, 106–154.Google Scholar
  37. Hughson, A. L., & Boakes, R. A. (2009). Passive perceptual learning in relation to wine: Short-term recognition and verbal description. Quarterly Journal of Experimental Psychology (2006), 62(1), 1–8.CrossRefGoogle Scholar
  38. Jäncke, L., Koeneke, S., Hoppe, A., Rominger, C., & Hänggi, J. (2009). The architecture of the golfer’s brain. PLoS One, 4(3), e4785.CrossRefGoogle Scholar
  39. Jäncke, L., Langer, N., & Hänggi, J. (2012). Diminished whole-brain but enhanced peri-sylvian connectivity in absolute pitch musicians. Journal of Cognitive Neuroscience, 24(6), 1447–1461.CrossRefGoogle Scholar
  40. Kahnt, T., Grueschow, M., Speck, O., & Haynes, J.-D. (2011). Perceptual learning and decision-making in human medial frontal cortex. Neuron, 70(3), 549–559.CrossRefGoogle Scholar
  41. Karni, A., & Sagi, D. (1991). Where practice makes perfect in texture discrimination: Evidence for primary visual cortex plasticity. Proceedings of the National Academy of Sciences of the United States of America, 88(11), 4966–4970.CrossRefGoogle Scholar
  42. Karni, A., & Sagi, D. (1993). The time course of learning a visual skill. Nature, 365(6443), 250–252.CrossRefGoogle Scholar
  43. Karni, A., Tanne, D., Rubenstein, B. S., Askenasy, J. J., & Sagi, D. (1994). Dependence on REM sleep of overnight improvement of a perceptual skill. Science (New York, NY), 265(5172), 679–682.CrossRefGoogle Scholar
  44. Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545), 155–158.CrossRefGoogle Scholar
  45. Kassubek, J., Schmidtke, K., Kimmig, H., Lücking, C. H., & Greenlee, M. W. (2001). Changes in cortical activation during mirror reading before and after training: An fMRI study of procedural learning. Brain Research. Cognitive Brain Research, 10(3), 207–217.CrossRefGoogle Scholar
  46. Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science (New York, NY), 279(5357), 1714–1718.CrossRefGoogle Scholar
  47. Kim, J., Lee, H. M., Kim, W. J., Park, H. J., Kim, S. W., Moon, D. H., et al. (2008). Neural correlates of pre-performance routines in expert and novice archers. Neuroscience Letters, 445(3), 236–241.CrossRefGoogle Scholar
  48. Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., et al. (1998). Evidence for striatal dopamine release during a video game. Nature, 393(6682), 266–268.CrossRefGoogle Scholar
  49. Kühn, S., Romanowski, A., Schilling, C., Lorenz, R., Mörsen, C., Seiferth, N., et al. (2011). The neural basis of video gaming. Translational Psychiatry, 1, e53.CrossRefGoogle Scholar
  50. Kyndt, E., Onghena, P., Smet, K., & Dochy, F. (Accepted). Employees’ learning intention: Comparing low- and high-qualified employees. International Journal of Educational and Vocational Guidance.Google Scholar
  51. Lee, B. B., Martin, P. R., & Grünert, U. (2010). Retinal connectivity and primate vision. Progress in Retinal and Eye Research, 29(6), 622–639.CrossRefGoogle Scholar
  52. Lee, H., Voss, M. W., Prakash, R. S., Boot, W. R., Vo, L. T. K., Basak, C., et al. (2012). Videogame training strategy-induced change in brain function during a complex visuomotor task. Behavioural Brain Research, 232(2), 348–357.CrossRefGoogle Scholar
  53. LeVay, S., Wiesel, T. N., & Hubel, D. H. (1980). The development of ocular dominance columns in normal and visually deprived monkeys. The Journal of Comparative Neurology, 191(1), 1–51.CrossRefGoogle Scholar
  54. Levi, D. M., & Li, R. W. (2009). Perceptual learning as a potential treatment for amblyopia: A mini-review. Vision Research, 49(21), 2535–2549.CrossRefGoogle Scholar
  55. Li, R., Polat, U., Makous, W., & Bavelier, D. (2009). Enhancing the contrast sensitivity function through action video game training. Nature Neuroscience, 12(5), 549–551.CrossRefGoogle Scholar
  56. Löwel, S., Schmidt, K. E., Kim, D. S., Wolf, F., Hoffsümmer, F., Singer, W., & Bonhoeffer, T. (1998). The layout of orientation and ocular dominance domains in area 17 of strabismic cats. European Journal of Neuroscience, 10(8), 2629–2643.CrossRefGoogle Scholar
  57. Mednick, S., Nakayama, K., & Stickgold, R. (2003). Sleep-dependent learning: A nap is as good as a night. Nature Neuroscience, 6(7), 697–698. doi: 10.1038/nn1078.CrossRefGoogle Scholar
  58. Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2012). Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neuroscience & Biobehavioral Reviews, 36(1), 341–349.CrossRefGoogle Scholar
  59. Mollon, J. D., & Danilova, M. V. (1996). Three remarks on perceptual learning. Spatial Vision, 10(1), 51–58.CrossRefGoogle Scholar
  60. Moreno, M. M., Linster, C., Escanilla, O., Sacquet, J., Didier, A., & Mandairon, N. (2009). Olfactory perceptual learning requires adult neurogenesis. Proceedings of the National Academy of Sciences, 106(42), 17980–17985.CrossRefGoogle Scholar
  61. Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S., et al. (2002). Early consolidation in human primary motor cortex. Nature, 415(6872), 640–644.CrossRefGoogle Scholar
  62. Nomoto, K., Schultz, W., Watanabe, T., & Sakagami, M. (2010). Temporally extended dopamine responses to perceptually demanding reward-predictive stimuli. The Journal of Neuroscience, 30(32), 10692–10702.Google Scholar
  63. Nyberg, L., Eriksson, J., Larsson, A., & Marklund, P. (2006). Learning by doing versus learning by thinking: An fMRI study of motor and mental training. Neuropsychologia, 44(5), 711–717.CrossRefGoogle Scholar
  64. Pavlov, I. P. (1927). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex (G. V. Anrep, Trans.). London: Oxford University Press.Google Scholar
  65. Pérès, M., van de Moortele, P. F., Pierard, C., Lehericy, S., Satabin, P., Le Bihan, D., & Guezennec, C. Y. (2000). Functional magnetic resonance imaging of mental strategy in a simulated aviation performance task. Aviation, Space, and Environmental Medicine, 71(12), 1218–1231.Google Scholar
  66. Poggio, T., Fahle, M., & Edelman, S. (1992). Fast perceptual learning in visual hyperacuity. Science, 256(5059), 1018–1021.CrossRefGoogle Scholar
  67. Poldrack, R. A. (2002). Neural systems for perceptual skill learning. Behavioral and Cognitive Neuroscience Reviews, 1(1), 76–83.CrossRefGoogle Scholar
  68. Poldrack, R. A., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1998). The neural basis of visual skill learning: An fMRI study of mirror reading. Cerebral Cortex (New York, NY: 1991), 8(1), 1–10.Google Scholar
  69. Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. A., Lamantia, A. S., McNamara, J. O., & Williams, M. (2004). Neuroscience (3rd ed.). New York: Sinauer Press.Google Scholar
  70. Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. A., & Lamantia, A. S. (2008). Neuroscience (4th ed.). New York: Sinauer Press.Google Scholar
  71. Robertson, E. M. (2004). Skill learning: Putting procedural consolidation in context. Current biology: CB, 14(24), R1061–R1063.CrossRefGoogle Scholar
  72. Roelfsema, P. R., van Ooyen, A., & Watanabe, T. (2010). Perceptual learning rules based on reinforcers and attention. Trends in Cognitive Sciences, 14(2), 64–71.CrossRefGoogle Scholar
  73. Rokem, A., & Silver, M. A. (2010). Cholinergic enhancement augments magnitude and specificity of visual perceptual learning in healthy humans. Current Biology: CB, 20(19), 1723–1728.CrossRefGoogle Scholar
  74. Sagi, D. (2011). Perceptual learning in vision research. Vision Research, 51(13), 1552–1566.CrossRefGoogle Scholar
  75. Sagi, Y., Tavor, I., Hofstetter, S., Tzur-Moryosef, S., Blumenfeld-Katzir, T., & Assaf, Y. (2012). Learning in the fast lane: New insights into neuroplasticity. Neuron, 73(6), 1195–1203.CrossRefGoogle Scholar
  76. Schlaug, G., Jäncke, L., Huang, Y., & Steinmetz, H. (1995). In vivo evidence of structural brain asymmetry in musicians. Science (New York, NY), 267(5198), 699–701.CrossRefGoogle Scholar
  77. Schlegel, A. A., Rudelson, J. J., & Tse, P. U. (2012). White matter structure changes as adults learn a second language. Journal of Cognitive Neuroscience, 24(8), 1664–1670.CrossRefGoogle Scholar
  78. Schmidt-Wilcke, T., Rosengarth, K., Luerding, R., Bogdahn, U., & Greenlee, M. W. (2010). Distinct patterns of functional and structural neuroplasticity associated with learning Morse code. NeuroImage, 51(3), 1234–1241.CrossRefGoogle Scholar
  79. Seitz, A. R., & Watanabe, T. (2003). Psychophysics: Is subliminal learning really passive? Nature, 422(6927), 36.CrossRefGoogle Scholar
  80. Seitz, A., & Watanabe, T. (2005). A unified model for perceptual learning. Trends in Cognitive Sciences, 9(7), 329–334.CrossRefGoogle Scholar
  81. Steele, C. J., Scholz, J., Douaud, G., Johansen-Berg, H., & Penhune, V. B. (2012). Structural correlates of skilled performance on a motor sequence task. Frontiers in Human Neuroscience, 6, 289.CrossRefGoogle Scholar
  82. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning. Cambridge, MA: MIT Press.Google Scholar
  83. Tang, K., Staines, W. R., Black, S. E., & McIlroy, W. E. (2009). Novel vibrotactile discrimination task for investigating the neural correlates of short-term learning with fMRI. Journal of Neuroscience Methods, 178(1), 65–74.CrossRefGoogle Scholar
  84. Tricomi, E., Delgado, M. R., McCandliss, B. D., McClelland, J. L., & Fiez, J. A. (2006). Performance feedback drives caudate activation in a phonological learning task. Journal of Cognitive Neuroscience, 18(6), 1029–1043.CrossRefGoogle Scholar
  85. Tsushima, Y., Sasaki, Y., & Watanabe, T. (2006). Greater disruption due to failure of inhibitory control on an ambiguous distractor. Science (New York, NY), 314(5806), 1786–1788. doi: 10.1126/science.1133197.CrossRefGoogle Scholar
  86. Tsushima, Y., Seitz, A. R., & Watanabe, T. (2008). Task- irrelevant learning occurs only when the irrelevant feature is weak. Current Biology, 18(12), 516–517.CrossRefGoogle Scholar
  87. Ungerleider, L. G., Doyon, J., & Karni, A. (2002). Imaging brain plasticity during motor skill learning. Neurobiology of Learning and Memory, 78(3), 553–564.CrossRefGoogle Scholar
  88. Wan, X., Takano, D., Asamizuya, T., Suzuki, C., Ueno, K., Cheng, K., et al. (2012). Developing intuition: Neural correlates of cognitive-skill learning in caudate nucleus. The Journal of Neuroscience, 32(48), 17492–17501.Google Scholar
  89. Watanabe, T., Náñez, Y., & Sasak, S. (2001). Perceptual learning without perception. Nature, 413, 844–848.CrossRefGoogle Scholar
  90. Webster, M. A., Kaping, D., Mizokami, Y., & Duhamel, P. (2004). Adaptation to natural facial categories. Nature, 428(6982), 557–561.CrossRefGoogle Scholar
  91. Werner, J. S. & Chalupa, L. M. (Eds.). (2013). The new visual neurosciences. Cambridge, MA: MIT Press.Google Scholar
  92. Wiesel, T. N., & Hubel, D. H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26, 1003–1017.Google Scholar
  93. Wright, M. J., Bishop, D. T., Jackson, R. C., & Abernethy, B. (2011). Cortical fMRI activation to opponents’ body kinematics in sport-related anticipation: Expert-novice differences with normal and point-light video. Neuroscience Letters, 500(3), 216–221.CrossRefGoogle Scholar
  94. Yotsumoto, Y., Sasaki, Y., Chan, P., Vasios, C. E., Bonmassar, G., Ito, N., et al. (2009). Location-specific cortical activation changes during sleep after training for perceptual learning. Current Biology, 19(15), 1278–1282.CrossRefGoogle Scholar
  95. Zatorre, R. J., Perry, D. W., Beckett, C. A., Westbury, C. F., & Evans, A. C. (1998). Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 3172–3177.CrossRefGoogle Scholar

Suggested Readings

  1. Fahle, M., & Poggio, T. (Eds.). (2002). Perceptual learning (p. 2002). Cambridge, MA: MIT Press.Google Scholar
  2. Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. A., & Lamantia, A. S. (2008). Neuroscience (4th ed.). New York: Sinauer Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute of Experimental PsychologyUniversity of RegensburgRegensburgGermany

Personalised recommendations