Skip to main content

Nanodiamonds as Intracellular Probes for Imaging in Biology and Medicine

  • Chapter
  • First Online:
Intracellular Delivery II

Part of the book series: Fundamental Biomedical Technologies ((FBMT,volume 7))

Abstract

In recent years, diamond nanoparticles have received a great deal of attention due to their unique photophysical and biological properties. Nanodiamonds (NDs) show low toxicity and are considered to be a highly biocompatible carbon nanomaterial useful in a wide range of applications. Thanks to their ability to accommodate nitrogen-vacancy (N-V) color centers, NDs are a prime example of non-photobleachable fluorescent labels and nanosensors. Here, we present a survey of ND applications in biology and medicine with an emphasis on bio-imaging. We focus on distinguishing the properties of detonation NDs and high-pressure high-temperature (HPHT) NDs and describing their physicochemical properties, structure and possible modifications by small molecules and biomolecules. We summarize and critically evaluate in vitro and in vivo data on ND toxicity and biocompatibility, cellular internalization, localization and targeting by surface-attached ligands. We discuss current achievements in bioimaging using fluorescent NDs and the potential of NDs in diagnostics and drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ATRP:

Atom-transfer radical-polymerization

CVD:

Chemical vapor deposition

DND:

Detonation nanodiamond

DOX:

Doxorubicin hydrochloride

ESR:

Electron spin resonance

FND:

Fluorescent nanodiamond

GH:

Growth hormone

GHR:

Growth hormone receptor

HCPT:

10-Hydroxycamptothecin

HPHT:

High-pressure high-temperature

MTT:

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

MWNT:

Multi-walled carbon nanotubes

ND:

Nanodiamond

ND-FA:

Nanodiamond conjugated with folic acid

ND-Tx:

Nanodiamond conjugated with chlorotoxin

N-V center:

Nitrogen-vacancy center

PAH:

Polyallylamine

PEI-800:

Polyethyleneimine-800

SWNT:

Single-walled carbon nanotubes

TE-DNDs:

Targeted epirubicin-loaded DNDs

ZPL:

Zero phonon line

References

  • Adnan A, Lam R, Chen H, Lee J, Schaffer DJ, Barnard AS, Schatz GC, Ho D, Liu WK (2011) Atomistic simulation and measurement of pH dependent cancer therapeutic interactions with nanodiamond carrier. Mol Pharm 8:368–374. doi:10.1021/mp1002398

    CAS  PubMed  Google Scholar 

  • Aharonovich I, Greentree AD, Prawer S (2011) Diamond photonics. Nat Photonics 5:397–405. doi:10.1038/nphoton.2011.54

    CAS  Google Scholar 

  • Alhaddad A, Adam M-P, Botsoa J, Dantelle G, Perruchas S, Gacoin T, Mansuy C, Lavielle S, Malvy C, Treussart F, Bertrand J-R (2011) Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells. Small 7:3087–3095. doi:10.1002/smll.201101193

    CAS  PubMed  Google Scholar 

  • Alhaddad A, Durieu C, Dantelle G, Le Cam E, Malvy C, Treussart F, Bertrand J-R (2012) Influence of the internalization pathway on the efficacy of siRNA delivery by cationic fluorescent nanodiamonds in the Ewing sarcoma cell model. PLoS ONE 7:e52207. doi:10.1371/journal.pone.0052207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Badea I, Kaur, Michel, Chitanda, Maley, Yang, Borondics, Verrall (2012) Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies. Int J Nanomedicine 3851. doi:10.2147/IJN.S32877

  • Bakowicz-Mitura K, Bartosz G, Mitura S (2007) Influence of diamond powder particles on human gene expression. Surf Coatings Technol 201:6131–6135. doi:10.1016/j.surfcoat.2006.08.142

    CAS  Google Scholar 

  • Balasubramanian G, Chan IY, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer PR, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J (2008) Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455:648–651. doi:10.1038/nature07278

    CAS  PubMed  Google Scholar 

  • Barnard AS (2009) Diamond standard in diagnostics: nanodiamond biolabels make their mark. Analyst 134:1751. doi:10.1039/b908532g

    CAS  PubMed  Google Scholar 

  • Blaber SP, Hill CJ, Webster RA, Say JM, Brown LJ, Wang S-C, Vesey G, Herbert BR (2013) Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells. PLoS ONE 8:e52997. doi:10.1371/journal.pone.0052997

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boudou J-P, Curmi PA, Jelezko F, Wrachtrup J, Aubert P, Sennour M, Balasubramanian G, Reuter R, Thorel A, Gaffet E (2009) High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20:235602. doi:10.1088/0957-4484/20/23/235602

    PubMed Central  PubMed  Google Scholar 

  • Bradac C, Gaebel T, Naidoo N, Sellars MJ, Twamley J, Brown LJ, Barnard AS, Plakhotnik T, Zvyagin AV, Rabeau JR (2010) Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat Nanotechnol 5:345–349. doi:10.1038/nnano.2010.56

    CAS  PubMed  Google Scholar 

  • Bumb A, Sarkar SK, Billington N, Brechbiel MW, Neuman KC (2013) Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization. J Am Chem Soc 135:7815–7818. doi:10.1021/ja4016815

    CAS  PubMed  Google Scholar 

  • Burleson T, Yusuf N, Stanishevsky A (2009) Surface modification of nanodiamonds for biomedical application and analysis by infrared spectroscopy. J Ach Mat Manufac Eng 37:258–263

    Google Scholar 

  • Butler JE, Sumant AV (2008) The CVD of nanodiamond materials. Chem Vap Depos 14:145–160. doi:10.1002/cvde.200700037

    CAS  Google Scholar 

  • Cao L (2005) Immobilised enzymes: science or art? Curr Opin Chem Biol 9:217–226. doi:10.1016/j.cbpa.2005.02.014

    CAS  PubMed  Google Scholar 

  • Chang Y-R, Lee H-Y, Chen K, Chang C-C, Tsai D-S, Fu C-C, Lim T-S, Tzeng Y-K, Fang C-Y, Han C-C, Chang H-C, Fann W (2008) Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol 3:284–288. doi:10.1038/nnano.2008.99

    CAS  PubMed  Google Scholar 

  • Chang L-Y, Ōsawa E, Barnard AS (2011) Confirmation of the electrostatic self-assembly of nanodiamonds. Nanoscale 3:958. doi:10.1039/c0nr00883d

    CAS  PubMed  Google Scholar 

  • Chao JI, Perevedentseva E, Chung PH, Liu KK, Cheng CY, Chang CC, Cheng CL (2007) Nanometer-sized diamond particle as a probe for biolabeling. Biophys J 93:2199–2208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen M, Pierstorff ED, Lam R, Li S-Y, Huang H, Osawa E, Ho D (2009) Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano 3:2016–2022. doi:10.1021/nn900480m

    CAS  PubMed  Google Scholar 

  • Chen M, Zhang X-Q, Man HB, Lam R, Chow EK, Ho D (2010) Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery. J Phys Chem Lett 1:3167–3171. doi:10.1021/jz1013278

    CAS  Google Scholar 

  • Cheng C-Y, Perevedentseva E, Tu J-S, Chung P-H, Cheng C-L, Liu K-K, Chao J-I, Chen P-H, Chang C-C (2007) Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling. Appl Phys Lett 90:163903. doi:10.1063/1.2727557

    Google Scholar 

  • Cheng L-C, Chen HM, Lai T-C, Chan Y-C, Liu R-S, Sung JC, Hsiao M, Chen C-H, Her L-J, Tsai DP (2013) Targeting polymeric fluorescent nanodiamond-gold/silver multi-functional nanoparticles as a light-transforming hyperthermia reagent for cancer cells. Nanoscale 5:3931–3940. doi:10.1039/C3NR34091K

    CAS  PubMed  Google Scholar 

  • Chi Y, Chen G, Jelezko F, Wu E, Zeng H (2011) Enhanced photoluminescence of single-photon emitters in nanodiamonds on a gold film. IEEE Photonics Technol Lett 23:374–376. doi:10.1109/LPT.2011.2106488

    CAS  Google Scholar 

  • Chow EK, Zhang X-Q, Chen M, Lam R, Robinson E, Huang H, Schaffer D, Osawa E, Goga A, Ho D (2011) Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med 3:73ra21

    Google Scholar 

  • Chu Z, Zhang S, Zhang B, Zhang C, Fang C-Y, Rehor I, Cigler P, Chang H-C, Lin G, Liu R, Li Q (2014) Unambiguous observation of shape effects on cellular fate of nanoparticles. Sci Reports 4:4495. doi:10.1038/srep04495

  • Chung P-H, Perevedentseva E, Tu J-S, Chang CC, Cheng C-L (2006) Spectroscopic study of bio-functionalized nanodiamonds. Diam Relat Mater 15:622–625. doi:10.1016/j.diamond.2005.11.019

    CAS  Google Scholar 

  • Dahoumane SA, Nguyen MN, Thorel A, Boudou J-P, Chehimi MM, Mangeney C (2009) Protein-functionalized hairy diamond nanoparticles. Langmuir 25:9633–9638. doi:10.1021/la9009509

    CAS  PubMed  Google Scholar 

  • Danilenko VV (2004) On the history of the discovery of nanodiamond synthesis. Phys Solid State 46:595–599

    CAS  Google Scholar 

  • Davies G, Lawson SC, Collins AT, Mainwood A, Sharp SJ (1992) Vacancy-related centers in diamond. Phys Rev B 46:13157. doi:10.1103/PhysRevB.46.13157

    CAS  Google Scholar 

  • Dolmatov VY (2007) Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications. Russ Chem Rev 76:339–360. doi:10.1070/RC2007v076n04ABEH003643

    CAS  Google Scholar 

  • Eidelman ED, Siklitsky VI, Sharonova LV, Yagovkina MA, Vul’ AY, Takahashi M, Inakuma M, Ozawa M, Ōsawa E (2005) A stable suspension of single ultrananocrystalline diamond particles. Diam Relat Mater 14:1765–1769. doi:10.1016/j.diamond.2005.08.057

    CAS  Google Scholar 

  • Faklaris O, Garrot D, Joshi V, Druon F, Boudou JP, Sauvage T, Georges P, Curmi PA, Treussart F (2008) Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway. Small 4:2236–2239

    CAS  PubMed  Google Scholar 

  • Faklaris O, Joshi V, Irinopoulou T, Tauc P, Sennour M, Girard H, Gesset C, Arnault JC, Thorel A, Boudou JP (2009a) Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano 3:3955–3962

    CAS  PubMed  Google Scholar 

  • Faklaris O, Garrot D, Treussart F, Joshi V, Curmi P, Boudou J-P, Sauvage T (2009b) Comparison of the photoluminescence properties of semiconductor quantum dots and non-blinking diamond nanoparticles. Observation of the diffusion of diamond nanoparticles in living cells. ArXiv Prepr. ArXiv09042648

    Google Scholar 

  • Fang C-Y, Vaijayanthimala V, Cheng C-A, Yeh S-H, Chang C-F, Li C-L, Chang H-C (2011) The exocytosis of fluorescent nanodiamond and its use as a long-term cell tracker. Small 7:3363–3370. doi:10.1002/smll.201101233

    CAS  PubMed  Google Scholar 

  • Fu CC, Lee HY, Chen K, Lim TS, Wu HY, Lin PK, Wei PK, Tsao PH, Chang HC, Fann W (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci 104:727–732

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu K-MC, Santori C, Barclay PE, Beausoleil RG (2010) Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation. Appl Phys Lett 96:121907. doi:10.1063/1.3364135

    Google Scholar 

  • Fu Y, An N, Zheng S, Liang A, Li Y (2012) BmK CT-conjugated fluorescence nanodiamond as potential glioma-targeted imaging and drug. Diam Relat Mater 21:73–76. doi:10.1016/j.diamond.2011.10.010

    CAS  Google Scholar 

  • Gaebel T, Domhan M, Wittmann C, Popa I, Jelezko F, Rabeau J, Greentree A, Prawer S, Trajkov E, Hemmer PR, Wrachtrup J (2006) Photochromism in single nitrogen-vacancy defect in diamond. Appl Phys B 82:243–246. doi:10.1007/s00340-005-2056-2

    CAS  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi:10.1038/nmat1849

    CAS  PubMed  Google Scholar 

  • Gracio JJ, Fan QH, Madaleno JC (2010) Diamond growth by chemical vapour deposition. J Phys Appl Phys 43:374017. doi:10.1088/0022-3727/43/37/374017

    Google Scholar 

  • Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C (1997) Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276:2012–2014. doi:10.1126/science.276.5321.2012

    CAS  Google Scholar 

  • Guan B, Zou F, Zhi J (2010) Nanodiamond as the pH-responsive vehicle for an anticancer drug. Small 6:1514–1519. doi:10.1002/smll.200902305

    CAS  PubMed  Google Scholar 

  • Hall LT, Beart GCG, Thomas EA, Simpson DA, McGuinness LP, Cole JH, Manton JH, Scholten RE, Jelezko F, Wrachtrup J, Petrou S, Hollenberg LCL (2012) High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond. Sci Reports. doi:10.1038/srep00401

    Google Scholar 

  • Havlik J, Petrakova V, Rehor I, Petrak V, Gulka M, Stursa J, Kucka J, Ralis J, Rendler T, Lee S-Y, Reuter R, Wrachtrup J, Ledvina M, Nesladek M, Cigler P (2013) Boosting nanodiamond fluorescence: towards development of brighter probes. Nanoscale 5:3208–3211. doi:10.1039/c2nr32778c

    CAS  PubMed  Google Scholar 

  • Hegyi A, Yablonovitch E (2013) Molecular imaging by optically detected electron spin resonance of nitrogen-vacancies in nanodiamonds. Nano Lett 13:1173–1178. doi:10.1021/nl304570b

    CAS  PubMed  Google Scholar 

  • Hens SC, Cunningham G, Tyler T, Moseenkov S, Kuznetsov V, Shenderova O (2008) Nanodiamond bioconjugate probes and their collection by electrophoresis. Diam Relat Mater 17:1858–1866. doi:10.1016/j.diamond.2008.03.020

    CAS  Google Scholar 

  • Ho D (2009) Beyond the sparkle: the impact of nanodiamonds as biolabeling and therapeutic agents. ACS Nano 3:3825–3829. doi:10.1021/nn9016247

    CAS  PubMed  Google Scholar 

  • Ho D (2010) Nanodiamonds: applications in biology and nanoscale medicine. Springer, Berlin

    Google Scholar 

  • Holt KB (2007) Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing. Philos Trans R Soc Math Phys Eng Sci 365:2845–2861. doi:10.1098/rsta.2007.0005

    CAS  Google Scholar 

  • Horie M, Komaba LK, Kato H, Nakamura A, Yamamoto K, Endoh S, Fujita K, Kinugasa S, Mizuno K, Hagihara Y, Yoshida Y, Iwahashi H (2012) Evaluation of cellular influences induced by stable nanodiamond dispersion; the cellular influences of nanodiamond are small. Diam Relat Mater 24:15–24. doi:10.1016/j.diamond.2012.01.037

    CAS  Google Scholar 

  • Hu W, Li Z, Yang J, Hou J (2013) Nondecaying long range effect of surface decoration on the charge state of NV center in diamond. J Chem Phys 138:034702. doi:10.1063/1.4775364

    PubMed  Google Scholar 

  • Huang L-CL, Chang H-C (2004) Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 20:5879–5884. doi:10.1021/la0495736

    CAS  PubMed  Google Scholar 

  • Huang H, Pierstorff E, Osawa E, Ho D (2007) Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett 7:3305–3314. doi:10.1021/nl071521o

    CAS  PubMed  Google Scholar 

  • Hui YY, Cheng CL, Chang HC (2010) Nanodiamonds for optical bioimaging. J Phys Appl Phys 43:374021

    Google Scholar 

  • Iakoubovskii K, Adriaenssens GJ, Nesladek M (2000) Photochromism of vacancy-related centres in diamond. J Phys Condens Matter 12:189–199. doi:10.1088/0953-8984/12/2/308

    CAS  Google Scholar 

  • Igarashi R, Yoshinari Y, Yokota H, Sugi T, Sugihara F, Ikeda K, Sumiya H, Tsuji S, Mori I, Tochio H, Harada Y, Shirakawa M (2012) Real-time background-free selective imaging of fluorescent nanodiamonds in vivo. Nano Lett 12:5726–5732. doi:10.1021/nl302979d

    CAS  PubMed  Google Scholar 

  • Jakub JW, Pendas S, Reintgen DS (2003) Current status of sentinel lymph node mapping and biopsy: facts and controversies. Oncologist 8:59–68. doi:10.1634/theoncologist.8-1-59

    PubMed  Google Scholar 

  • Jelezko F, Wrachtrup J (2006) Single defect centres in diamond: a review. Phys Status Solidi 203:3207–3225. doi:10.1002/pssa.200671403

    CAS  Google Scholar 

  • Jiang T, Xu K (1995) FTIR study of ultradispersed diamond powder synthesized by explosive detonation. Carbon 33:1663–1671. doi:10.1016/0008-6223(95)00115-1

    CAS  Google Scholar 

  • Karpukhin AV, Avkhacheva NV, Yakovlev RY, Kulakova II, Yashin VA, Lisichkin GV, Safronova VG (2011) Effect of detonation nanodiamonds on phagocyte activity. Cell Biol Int 35:727–733. doi:10.1042/CBI20100548

    PubMed  Google Scholar 

  • Kharisov BI, Kharissova OV, Chávez-Guerrero L (2010) Synthesis techniques, properties, and applications of nanodiamonds. Synth React Inorg, Met Org, Nano Met Chem 40:84–101

    CAS  Google Scholar 

  • Kong XL, Huang LCL, Hsu C-M, Chen W-H, Han C-C, Chang H-C (2005) High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Anal Chem 77:259–265. doi:10.1021/ac048971a

    CAS  PubMed  Google Scholar 

  • Kratochvílová I, Kovalenko A, Taylor A, Fendrych F, Řezáčová V, Vlček J, Záliš S, Šebera J, Cígler P, Ledvina M, Nesládek M (2010) The fluorescence of variously terminated nanodiamond particles: quantum chemical calculations. Phys Status Solidi 207:2045–2048. doi:10.1002/pssa.201000012

    Google Scholar 

  • Krueger A (2008a) New carbon materials: biological applications of functionalized nanodiamond materials. Chem Eur J 14:1382–1390. doi:10.1002/chem.200700987

    CAS  PubMed  Google Scholar 

  • Krueger A (2008b) The structure and reactivity of nanoscale diamond. J Mater Chem 18:1485. doi:10.1039/b716673g

    CAS  Google Scholar 

  • Krueger A (2008c) Diamond nanoparticles: jewels for chemistry and physics. Adv Mater 20:2445–2449. doi:10.1002/adma.200701856

    CAS  Google Scholar 

  • Krueger A (2010) Nanodiamond. Carbon Mater. Nanotechnol. Wiley-VCH Verlag GmbH & Co. KGaA, pp 329–388

    Google Scholar 

  • Krueger A (2011) Beyond the shine: recent progress in applications of nanodiamond. J Mater Chem 21:12571. doi:10.1039/c1jm11674f

    CAS  Google Scholar 

  • Krueger A, Lang D (2012) Functionality is key: recent progress in the surface modification of nanodiamond. Adv Funct Mater 22:890–906. doi:10.1002/adfm.201102670

    CAS  Google Scholar 

  • Krueger A, Stegk J, Liang Y, Lu L, Jarre G (2008) Biotinylated nanodiamond: simple and efficient functionalization of detonation diamond. Langmuir 24:4200–4204. doi:10.1021/la703482v

    CAS  PubMed  Google Scholar 

  • Krüger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii AE, Vul’ AY, Ōsawa E (2005) Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 43:1722–1730. doi:10.1016/j.carbon.2005.02.020

    Google Scholar 

  • Krüger A, Liang Y, Jarre G, Stegk J (2006) Surface functionalisation of detonation diamond suitable for biological applications. J Mater Chem 16:2322–2328. doi:10.1039/B601325B

    Google Scholar 

  • Kuo Y, Hsu T-Y, Wu Y-C, Hsu J-H, Chang H-C (2013) Fluorescence lifetime imaging microscopy of nanodiamonds in vivo. In: Hasan ZU, Hemmer PR, Lee H, Santori CM (eds) pp 863503

    Google Scholar 

  • Lee JW, Lee S, Jang S, Han KY, Kim Y, Hyun J, Kim SK, Lee Y (2013) Preparation of non-aggregated fluorescent nanodiamonds (FNDs) by non-covalent coating with a block copolymer and proteins for enhancement of intracellular uptake. Mol BioSyst 9:1004. doi:10.1039/c2mb25431j

    CAS  PubMed  Google Scholar 

  • Li Y, Zhou X (2010) Transferrin-coupled fluorescence nanodiamonds as targeting intracellular transporters: An investigation of the uptake mechanism. Diam Relat Mater 19:1163–1167

    CAS  Google Scholar 

  • Li L, Davidson JL, Lukehart CM (2006) Surface functionalization of nanodiamond particles via atom transfer radical polymerization. Carbon 44:2308–2315. doi:10.1016/j.carbon.2006.02.023

    CAS  Google Scholar 

  • Li J, Zhu Y, Li W, Zhang X, Peng Y, Huang Q (2010) Nanodiamonds as intracellular transporters of chemotherapeutic drug. Biomaterials 31:8410–8418. doi:10.1016/j.biomaterials.2010.07.058

    CAS  PubMed  Google Scholar 

  • Li X, Shao J, Qin Y, Shao C, Zheng T, Ye L (2011a) TAT-conjugated nanodiamond for the enhanced delivery of doxorubicin. J Mater Chem 21:7966. doi:10.1039/c1jm10653h

    CAS  Google Scholar 

  • Li Y, Zhou X, Wang D, Yang B, Yang P (2011b) Nanodiamond mediated delivery of chemotherapeutic drugs. J Mater Chem 21:16406. doi:10.1039/c1jm10926j

    CAS  Google Scholar 

  • Liang Y, Ozawa M, Krueger A (2009) A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3:2288–2296. doi:10.1021/nn900339s

    CAS  PubMed  Google Scholar 

  • Liang Y, Meinhardt T, Jarre G, Ozawa M, Vrdoljak P, SchOll A, Reinert F, Krueger A (2011) Deagglomeration and surface modification of thermally annealed nanoscale diamond. J Colloid Interface Sci 354:23–30. doi:10.1016/j.jcis.2010.10.044

    CAS  PubMed  Google Scholar 

  • Lin Y-C, Perevedentseva E, Tsai L-W, Wu K-T, Cheng C-L (2012) Nanodiamond for intracellular imaging in the microorganisms in vivo. J Biophotonics 5:838–847. doi:10.1002/jbio.201200088

    CAS  PubMed  Google Scholar 

  • Liu KK, Cheng CL, Chang CC, Chao JI (2007) Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology 18:325102

    Google Scholar 

  • Liu K-K, Chen M-F, Chen P-Y, Lee TJF, Cheng C-L, Chang C-C, Ho Y-P, Chao J-I (2008) Alpha-bungarotoxin binding to target cell in a developing visual system by carboxylated nanodiamond. Nanotechnology 19:205102. doi:10.1088/0957-4484/19/20/205102

    PubMed  Google Scholar 

  • Liu K-K, Wang C-C, Cheng C-L, Chao J-I (2009) Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials 30:4249–4259. doi:10.1016/j.biomaterials.2009.04.056

    CAS  PubMed  Google Scholar 

  • Liu K-K, Zheng W-W, Wang C-C, Chiu Y-C, Cheng C-L, Lo Y-S, Chen C, Chao J-I (2010) Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology 21:315106. doi:10.1088/0957-4484/21/31/315106

    PubMed  Google Scholar 

  • Liu J-H, Yang S-T, Chen X-X, Wang H (2012) Fluorescent carbon dots and nanodiamonds for biological imaging: preparation, application, pharmacokinetics and toxicity. Curr Drug Metab 13:1046–1056. doi:10.2174/138920012802850083

    CAS  PubMed  Google Scholar 

  • Maitra U, Gomathi A, Rao CNR (2008) Covalent and noncovalent functionalisation and solubilisation of nanodiamond. J Exp Nanosci 3:271–278. doi:10.1080/17458080802574155

    CAS  Google Scholar 

  • Man HB, Ho D (2012) Diamond as a nanomedical agent for versatile applications in drug delivery, imaging, and sensing. Phys Status Solidi sAppl Mater Sci 209:1609–1618. doi:10.1002/pssa.201200470

    CAS  Google Scholar 

  • Marcon L, Riquet F, Vicogne D, Szunerits S, Bodart J-F, Boukherroub R (2010) Cellular and in vivo toxicity of functionalized nanodiamond in Xenopus embryos. J Mater Chem 20:8064. doi:10.1039/c0jm01570a

    CAS  Google Scholar 

  • Martín R, Álvaro M, Herance JR, García H (2010a) Fenton-treated functionalized diamond nanoparticles as gene delivery system. ACS Nano 4:65–74. doi:10.1021/nn901616c

    PubMed  Google Scholar 

  • Martín R, Menchón C, Apostolova N, Victor VM, Álvaro M, Herance JR, García H (2010b) Nano-jewels in biology. Gold and platinum on diamond nanoparticles as antioxidant systems against cellular oxidative stress. ACS Nano 4:6957–6965. doi:10.1021/nn1019412

    PubMed  Google Scholar 

  • Maze JR, Stanwix PL, Hodges JS, Hong S, Taylor JM, Cappellaro P, Jiang L, Dutt MVG, Togan E, Zibrov AS, Yacoby A, Walsworth RL, Lukin MD (2008) Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455:644–647. doi:10.1038/nature07279

    CAS  PubMed  Google Scholar 

  • McGuinness LP, Yan Y, Stacey A, Simpson DA, Hall LT, Maclaurin D, Prawer S, Mulvaney P, Wrachtrup J, Caruso F, Scholten RE, Hollenberg LCL (2011) Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat Nanotechnol 6:358–363. doi:10.1038/nnano.2011.64

    CAS  PubMed  Google Scholar 

  • Mkandawire M, Pohl A, Gubarevich T, Lapina V, Appelhans D, ROdel G, Pompe W, Schreiber J, Opitz J (2009) Selective targeting of green fluorescent nanodiamond conjugates to mitochondria in HeLa cells. J Biophotonics 2:596–606. doi:10.1002/jbio.200910002

  • Mochalin V, Osswald S, Gogotsi Y (2009) Contribution of functional groups to the Raman Spectrum of nanodiamond powders. Chem Mater 21:273–279. doi:10.1021/cm802057q

    CAS  Google Scholar 

  • Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2011) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23. doi:10.1038/nnano.2011.209

    PubMed  Google Scholar 

  • Mohan N, Chen C-S, Hsieh H-H, Wu Y-C, Chang H-C (2010) In vivo imaging and toxicity assessments of fluorescent nanodiamonds in caenorhabditis elegans. Nano Lett 10:3692–3699. doi:10.1021/nl1021909

    CAS  PubMed  Google Scholar 

  • Moore L, Chow EK-H, Osawa E, Bishop JM, Ho D (2013) Diamond-lipid hybrids enhance chemotherapeutic tolerance and mediate tumor regression. Adv Mater 25:3532–3541. doi:10.1002/adma.201300343

    CAS  PubMed  Google Scholar 

  • Neugart F, Zappe A, Jelezko F, Tietz C, Boudou JP, Krueger A, Wrachtrup J (2007) Dynamics of diamond nanoparticles in solution and cells. Nano Lett 7:3588–3591. doi:10.1021/nl0716303

    CAS  PubMed  Google Scholar 

  • Nguyen T, Chang HC, Wu VWK (2007) Adsorption and hydrolytic activity of lysozyme on diamond nanocrystallites. Diam Relat Mater 16:872–876

    CAS  Google Scholar 

  • Opitz J, Mkandawire M, Sorge M, Rose N, Rudolph M, Krueger P, Hannstein I, Lapina VA, Appelhans D, Pompe W, Schreiber J, Roedel G (2010) Green fluorescent nanodiamond conjugates and their possible applications for biosensing In: Mohseni H, Razeghi M (eds) SPIE nano science + engineering pp 775914

    Google Scholar 

  • Ozawa M, Inaguma M, Takahashi M, Kataoka F, Krüger A, Ōsawa E (2007) Preparation and behavior of Brownish, clear nanodiamond colloids. Adv Mater 19:1201–1206. doi:10.1002/adma.200601452

    CAS  Google Scholar 

  • Perevedentseva E, Cheng C-Y, Chung P-H, Tu J-S, Hsieh Y-H, Cheng C-L (2007) The interaction of the protein lysozyme with bacteria E. coli observed using nanodiamond labelling. Nanotechnology 18:315102. doi:10.1088/0957-4484/18/31/315102

    Google Scholar 

  • Perevedentseva E, Cai P-J, Chiu Y-C, Cheng C-L (2011) Characterizing protein activities on the lysozyme and nanodiamond complex prepared for bio applications. Langmuir 27:1085–1091. doi:10.1021/la103155c

    CAS  PubMed  Google Scholar 

  • Petrakova V, Taylor A, Kratochvilova I, Fendrych F, Vacik J, Kucka J, Stursa J, Cigler P, Ledvina M, Fiserova A, Kneppo P, Nesladek M (2012) Luminescence of nanodiamond driven by atomic functionalization: towards novel detection principles. Adv Funct Mater 22:812–819. doi:10.1002/adfm.201101936

    CAS  Google Scholar 

  • Petráková V, Nesladek M, Taylor A, Fendrych F, Cigler P, Ledvina M, Vacik J, Stursa J, Kucka J (2011) Luminescence properties of engineered nitrogen vacancy centers in a close surface proximity. Phys Status Solidi 208:2051–2056. doi:10.1002/pssa.201100035

    Google Scholar 

  • Philip J, Hess P, Feygelson T, Butler JE, Chattopadhyay S, Chen KH, Chen LC (2003) Elastic, mechanical, and thermal properties of nanocrystalline diamond films. J Appl Phys 93:2164–2171. doi:10.1063/1.1537465

    CAS  Google Scholar 

  • Pinto H, Jones R, Palmer DW, Goss JP, Briddon PR, Oberg S (2011) Theory of the surface effects on the luminescence of the NV—defect in nanodiamond. Phys Status Solidi 208:2045–2050. doi:10.1002/pssa.201100013

    CAS  Google Scholar 

  • Pinto H, Jones R, Palmer DW, Goss JP, Tiwari AK, Briddon PR, Wright NG, Horsfall AB, Rayson MJ, Oberg S (2012) First-principles studies of the effect of (001) surface terminations on the electronic properties of the negatively charged nitrogen-vacancy defect in diamond. Phys Rev B. doi:10.1103/PhysRevB.86.045313

    Google Scholar 

  • Prabhakar N, Näreoja T, von Haartman E, Karaman DŞ, Jiang H, Koho S, Dolenko TA, Hänninen PE, Vlasov DI, Ralchenko VG, Hosomi S, Vlasov II, Sahlgren C, Rosenholm JM (2013) Core—shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application. Nanoscale 5:3713. doi:10.1039/c3nr33926b

    CAS  PubMed  Google Scholar 

  • Purtov KV, Burakova LP, Puzyr AP, Bondar VS (2008) The interaction of linear and ring forms of DNA molecules with nanodiamonds synthesized by detonation. Nanotechnology 19:325101. doi:10.1088/0957-4484/19/32/325101

    CAS  PubMed  Google Scholar 

  • Puzyr AP, Neshumayev DA, Tarskikh SV, Makarskaya GV, Dolmatov VY, Bondar VS (2004) Destruction of human blood cells in interaction with detonation nanodiamonds in experiments in vitro. Diam Relat Mater 13:2020–2023. doi:10.1016/j.diamond.2004.06.003

    CAS  Google Scholar 

  • Puzyr AP, Baron AV, Purtov KV, Bortnikov EV, Skobelev NN, Mogilnaya OA, Bondar VS (2007) Nanodiamonds with novel properties: a biological study. Diam Relat Mater 16:2124–2128. doi:10.1016/j.diamond.2007.07.025

    CAS  Google Scholar 

  • Puzyr’ AP, Purtov KV, Shenderova OA, Luo M, Brenner DW, Bondar VS (2007) The adsorption of aflatoxin B1 by detonation-synthesis nanodiamonds. Dokl Biochem Biophys 417:299–301. doi:10.1134/S1607672907060026

    Google Scholar 

  • Rehor I, Cigler P (2014) Precise Estimation of HPHT Nanodiamond Size Distribution Based on Transmission Electron Microscopy Image Analysis. Diam Relat Mater. doi:10.1016/j.diamond.2014.04.002

  • Rehor I, Mackova H, Filippov SK, Kucka J, Proks V, Slegerova J, Turner S, Vandeloo GV, Ledvina M, Hruby M, Cigler P (2014a) Fluorescent nanodiamonds with bioorthogonally reactive protein-resistant polymeric coatings. Chem Plus Chem 79:21–24. doi:10.1002/cplu.201300339

    Google Scholar 

  • Rehor I, Slegerova J, Kucka J, Proks V, Petrakova V, Adam M-P, Treussart F, Turner S, Bals S, Sacha P, Ledvina M, Wen AM, Steinmetz NF, Cigler P (2014b) Fluorescent nanodiamonds embedded in biocompatible translucent shells. Small 10:1106–1115. doi:10.1002/smll.201302336

    PubMed  Google Scholar 

  • Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775. doi:10.1038/nmeth.1248

    CAS  PubMed  Google Scholar 

  • Rojas S, Gispert JD, Martín R, Abad S, Menchón C, Pareto D, Víctor VM, Álvaro M, García H, Herance JR (2011) Biodistribution of amino-functionalized diamond nanoparticles. In Vivo studies based on 18 F radionuclide emission. ACS Nano 5:5552–5559. doi:10.1021/nn200986z

    CAS  PubMed  Google Scholar 

  • Rondin L, Dantelle G, Slablab A, Grosshans F, Treussart F, Bergonzo P, Perruchas S, Gacoin T, Chaigneau M, Chang H-C, Jacques V, Roch J-F (2010) Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. Phys Rev B. doi:10.1103/PhysRevB.82.115449

    Google Scholar 

  • Sahoo H (2012) Fluorescent labeling techniques in biomolecules: a flashback. RSC Adv 2:7017–7029. doi:10.1039/C2RA20389H

    CAS  Google Scholar 

  • Schietinger S, Barth M, Aichele T, Benson O (2009) Plasmon-enhanced single photon emission from a nanoassembled metal—Diamond hybrid structure at room temperature. Nano Lett 9:1694–1698. doi:10.1021/nl900384c

    CAS  PubMed  Google Scholar 

  • Schrand AM, Huang H, Carlson C, Schlager JJ, Osawa E, Hussain SM, Dai L (2007a) Are diamond nanoparticles cytotoxic? J Phys Chem B 111:2–7

    CAS  PubMed  Google Scholar 

  • Schrand AM, Dai L, Schlager JJ, Hussain SM, Osawa E (2007b) Differential biocompatibility of carbon nanotubes and nanodiamonds. Diam Relat Mater 16:2118–2123. doi:10.1016/j.diamond.2007.07.020

    CAS  Google Scholar 

  • Schrand AM, Hens SAC, Shenderova OA (2009) Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci 34:18–74. doi:10.1080/10408430902831987

    CAS  Google Scholar 

  • Schrand AM, Lin JB, Hens SC, Hussain SM (2011) Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds. Nanoscale 3:435. doi:10.1039/c0nr00408a

    CAS  PubMed  Google Scholar 

  • Shenderova OA, Zhirnov VV, Brenner DW (2002) Carbon nanostructures. Crit Rev Solid State Mater Sci 27:227–356. doi:10.1080/10408430208500497

    CAS  Google Scholar 

  • Shimkunas RA, Robinson E, Lam R, Lu S, Xu X, Zhang X-Q, Huang H, Osawa E, Ho D (2009) Nanodiamond–insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30:5720–5728. doi:10.1016/j.biomaterials.2009.07.004

    CAS  PubMed  Google Scholar 

  • Slepetz B, Laszlo I, Gogotsi Y, Hyde-Volpe D, Kertesz M (2010) Characterization of large vacancy clusters in diamond from a generational algorithm using tight binding density functional theory. Phys Chem Chem Phys 12:14017–14022. doi:10.1039/c0cp00523a

    CAS  PubMed  Google Scholar 

  • Solarska K, Gajewska A, Skolimowski J, Woś R, Bartosz G, Mitura K (2010) Effect of non-modified and modified nanodiamond particles by Fenton reaction on human endothelial cells. Manuf Eng 43:603–607

    Google Scholar 

  • Solarska K, Gajewska A, Bartosz G, Mitura K (2012a) Induction of apoptosis in human endothelial cells by nanodiamond particles. J Nanosci Nanotechnol 12:5117–5121. doi:10.1166/jnn.2012.4952

    CAS  PubMed  Google Scholar 

  • Solarska K, Gajewska A, Kaczorowski W, Bartosz G, Mitura K (2012b) Effect of nanodiamond powders on the viability and production of reactive oxygen and nitrogen species by human endothelial cells. Diam Relat Mater 21:107–113. doi:10.1016/j.diamond.2011.10.020

    CAS  Google Scholar 

  • Solarska-Ściuk K, Gajewska A, Skolimowski J, Mitura K, Bartosz G (2013) Stimulation of production of reactive oxygen and nitrogen species in endothelial cells by unmodified and Fenton-modified ultradisperse detonation diamond. Biotechnol Appl Biochem 60:259–265. doi:10.1002/bab.1071

    PubMed  Google Scholar 

  • Sreenivasan VKA, Ivukina EA, Deng W, Kelf TA, Zdobnova TA, Lukash SV, Veryugin BV, Stremovskiy OA, Zvyagin AV, Deyev SM (2011) Barstar: barnase—a versatile platform for colloidal diamond bioconjugation. J Mater Chem 21:65. doi:10.1039/c0jm02819c

    CAS  Google Scholar 

  • Thomas V, Halloran BA, Ambalavanan N, Catledge SA, Vohra YK (2012) In vitro studies on the effect of particle size on macrophage responses to nanodiamond wear debris. Acta Biomater 8:1939–1947. doi:10.1016/j.actbio.2012.01.033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tisler J, Reuter R, Lämmle A, Jelezko F, Balasubramanian G, Hemmer PR, Reinhard F, Wrachtrup J (2011) Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule. ACS Nano 5:7893–7898. doi:10.1021/nn2021259

    CAS  PubMed  Google Scholar 

  • Tu J-S, Perevedentseva E, Chung P-H, Cheng C-L (2006) Size-dependent surface CO stretching frequency investigations on nanodiamond particles. J Chem Phys 125:174713. doi:10.1063/1.2370880

  • Tzeng Y-K, Faklaris O, Chang B-M, Kuo Y, Hsu J-H, Chang H-C (2011) Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew Chem Int Ed 50:2262–2265. doi:10.1002/anie.201007215

    CAS  Google Scholar 

  • Vaijayanthimala V, Chang H-C (2009) Functionalized fluorescent nanodiamonds for biomedical applications. Nanomed 4:47–55. doi:10.2217/17435889.4.1.47

    CAS  Google Scholar 

  • Vaijayanthimala V, Tzeng Y-K, Chang H-C, Li C-L (2009) The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake. Nanotechnology 20:425103. doi:10.1088/0957-4484/20/42/425103

    PubMed  Google Scholar 

  • Vaijayanthimala V, Cheng P-Y, Yeh S-H, Liu K-K, Hsiao C-H, Chao J-I, Chang H-C (2012) The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials 33:7794–7802. doi:10.1016/j.biomaterials.2012.06.084

    CAS  PubMed  Google Scholar 

  • Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807. doi:10.1021/la0497200

    CAS  PubMed  Google Scholar 

  • Vial S, Mansuy C, Sagan S, Irinopoulou T, Burlina F, Boudou J-P, Chassaing G, Lavielle S (2008) Peptide-grafted nanodiamonds: preparation, cytotoxicity and uptake in cells. Chem Bio Chem 9:2113–2119. doi:10.1002/cbic.200800247

    CAS  PubMed  Google Scholar 

  • Villalba P, Ram MK, Gomez H, Bhethanabotla V, Helms MN, Kumar A, Kumar A (2012) Cellular and in vitro toxicity of nanodiamond-polyaniline composites in mammalian and bacterial cell. Mater Sci Eng C 32:594–598. doi:10.1016/j.msec.2011.12.017

    CAS  Google Scholar 

  • von Haartman E, Jiang H, Khomich AA, Zhang J, Burikov SA, Dolenko TA, Ruokolainen J, Gu H, Shenderova OA, Vlasov II, Rosenholm JM (2013) Core—shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery I: fabrication. J Mater Chem B 1:2358–2366. doi:10.1039/C3TB20308E

    Google Scholar 

  • Wang H-D, Niu CH, Yang Q, Badea I (2011) Study on protein conformation and adsorption behaviors in nanodiamond particle–protein complexes. Nanotechnology 22:145703. doi:10.1088/0957-4484/22/14/145703

    PubMed  Google Scholar 

  • Wee T-L, Mau Y-W, Fang C-Y, Hsu H-L, Han C-C, Chang H-C (2009) Preparation and characterization of green fluorescent nanodiamonds for biological applications. Diam Relat Mater 18:567–573. doi:10.1016/j.diamond.2008.08.012

    CAS  Google Scholar 

  • Wei L, Zhang W, Lu H, Yang P (2010) Immobilization of enzyme on detonation nanodiamond for highly efficient proteolysis. Talanta 80:1298–1304

    CAS  PubMed  Google Scholar 

  • Wei Q, Zhan L, Juanjuan B, Jing W, Jianjun W, Taoli S, Yi’an G, Wangsuo W (2012) Biodistribution of co-exposure to multi-walled carbon nanotubes and nanodiamonds in mice. Nanoscale Res Lett 7:1–9

    Google Scholar 

  • Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128. doi:10.1038/nm0103-123

    CAS  PubMed  Google Scholar 

  • Weng MF, Chiang SY, Wang NS, Niu H (2009) Fluorescent nanodiamonds for specifically targeted bioimaging: application to the interaction of transferrin with transferrin receptor. Diam Relat Mater 18:587–591

    CAS  Google Scholar 

  • Weng M-F, Chang B-J, Chiang S-Y, Wang N-S, Niu H (2012) Cellular uptake and phototoxicity of surface-modified fluorescent nanodiamonds. Diam Relat Mater 22:96–104. doi:10.1016/j.diamond.2011.12.035

    CAS  Google Scholar 

  • Williams DF (1987) Definitions in biomaterials: proceedings of a consensus conference of the European Society for Biomaterials, Chester. Elsevier, 3–5 Mar 1986

    Google Scholar 

  • Williams OA (2011) Nanocrystalline diamond. Diam Relat Mater 20:621–640. doi:10.1016/j.diamond.2011.02.015

    CAS  Google Scholar 

  • Wrachtrup J, Jelezko F, Grotz B, McGuinness L (2013) Nitrogen-vacancy centers close to surfaces. MRS Bull 38:149–154. doi:10.1557/mrs.2013.22

    CAS  Google Scholar 

  • Wu VW-K (2010) Preparation for optimal conformation of lysozyme with nanodiamond and nanosilica as carriers. Chin J Chem 28:2520–2526

    CAS  Google Scholar 

  • Xing Y, Xiong W, Zhu L, Osawa E, Hussin S, Dai L (2011) DNA damage in embryonic stem cells caused by nanodiamonds. ACS Nano 5:2376

    Google Scholar 

  • Yan J, Guo Y, Altawashi A, Moosa B, Lecommandoux S, Khashab NM (2012) Experimental and theoretical evaluation of nanodiamonds as pH triggered drug carriers. New J Chem 36:1479. doi:10.1039/c2nj40226b

    CAS  Google Scholar 

  • Yeap WS, Tan YY, Loh KP (2008) Using detonation nanodiamond for the specific capture of glycoproteins. Anal Chem 80:4659–4665. doi:10.1021/ac800009v

    CAS  PubMed  Google Scholar 

  • Yu S-J, Kang M-W, Chang H-C, Chen K-M, Yu Y-C (2005) Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 127:17604–17605. doi:10.1021/ja0567081

    CAS  PubMed  Google Scholar 

  • Yuan Y, Chen Y, Liu J-H, Wang H, Liu Y (2009) Biodistribution and fate of nanodiamonds in vivo. Diam Relat Mater 18:95–100. doi:10.1016/j.diamond.2008.10.031

    CAS  Google Scholar 

  • Yuan Y, Wang X, Jia G, Liu J-H, Wang T, Gu Y, Yang S-T, Zhen S, Wang H, Liu Y (2010) Pulmonary toxicity and translocation of nanodiamonds in mice. Diam Relat Mater 19:291–299. doi:10.1016/j.diamond.2009.11.022

    CAS  Google Scholar 

  • Zhang B, Li Y, Fang C-Y, Chang C-C, Chen C-S, Chen Y-Y, Chang H-C (2009a) Receptor-mediated cellular uptake of folate-conjugated fluorescent nanodiamonds: a combined ensemble and single-particle study. Small 5:2716–2721. doi:10.1002/smll.200900725

    CAS  PubMed  Google Scholar 

  • Zhang X-Q, Chen M, Lam R, Xu X, Osawa E, Ho D (2009b) Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano 3:2609–2616. doi:10.1021/nn900865g

    CAS  PubMed  Google Scholar 

  • Zhang X, Yin J, Kang C, Li J, Zhu Y, Li W, Huang Q, Zhu Z (2010) Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicol Lett 198:237–243. doi:10.1016/j.toxlet.2010.07.001

    CAS  PubMed  Google Scholar 

  • Zhang X-Q, Lam R, Xu X, Chow EK, Kim H-J, Ho D (2011) Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy. Adv Mater 23:4770–4775. doi:10.1002/adma.201102263

    CAS  PubMed  Google Scholar 

  • Zhang X, Fu C, Feng L, Ji Y, Tao L, Huang Q, Li S, Wei Y (2012a) PEGylation and polyPEGylation of nanodiamond. Polymer 53:3178–3184. doi:10.1016/j.polymer.2012.05.029

    CAS  Google Scholar 

  • Zhang X, Hu W, Li J, Tao L, Wei Y (2012b) A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol Res 1:62. doi:10.1039/c2tx20006f

    CAS  Google Scholar 

  • Zhao L, Takimoto T, Ito M, Kitagawa N, Kimura T, Komatsu N (2011) Chromatographic separation of highly soluble diamond nanoparticles prepared by polyglycerol grafting. Angew Chem Int Ed 50:1388–1392. doi:10.1002/anie.201006310

    CAS  Google Scholar 

  • Zhao N, Honert J, Schmid B, Klas M, Isoya J, Markham M, Twitchen D, Jelezko F, Liu R-B, Fedder H, Wrachtrup J (2012) Sensing single remote nuclear spins. Nat Nanotechnol 7:657–662. doi:10.1038/NNANO.2012.152

    CAS  PubMed  Google Scholar 

  • Zhu Y (2012) The Biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics 2:302–312. doi:10.7150/thno.3627

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by GACR project P108/12/0640 and MSMT CR grant No. LH11027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Cigler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Slegerova, J., Rehor, I., Havlik, J., Raabova, H., Muchova, E., Cigler, P. (2014). Nanodiamonds as Intracellular Probes for Imaging in Biology and Medicine. In: Prokop, A., Iwasaki, Y., Harada, A. (eds) Intracellular Delivery II. Fundamental Biomedical Technologies, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8896-0_18

Download citation

Publish with us

Policies and ethics