Skip to main content

Structural Biology of the Membrane Attack Complex

  • Chapter
  • First Online:
MACPF/CDC Proteins - Agents of Defence, Attack and Invasion

Part of the book series: Subcellular Biochemistry ((SCBI,volume 80))

Abstract

The complement system is an intricate network of serum proteins that mediates humoral innate immunity through an amplification cascade that ultimately leads to recruitment of inflammatory cells or opsonisation or killing of pathogens. One effector arm of this network is the terminal pathway of complement, which leads to the formation of the membrane attack complex (MAC) composed of complement components C5b, C6, C7, C8 and C9. Upon formation of C5 convertases via the classical or alternative pathways of complement activation, C5b is generated from C5 by proteolytic cleavage, nucleating a series of association and polymerisation reactions of the MAC-constituting complement components that culminate in pore formation of pathogenic membranes. Recent structures of MAC components and homologous proteins significantly increased our understanding of oligomerisation, membrane association and integration, shedding light onto the molecular mechanism of this important branch of the innate immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Aa:

Amino acid

CCP:

Complement control protein repeat

CDCs:

Cholesterol-dependent cytolysins

CH1 and CH2:

Helical cluster 1 and helical cluster 2

CVF:

Cobra venom factor

d1, d3 and d4:

Domain 1, domain 3 and domain 4

EGF:

Epidermal growth factor-like repeat

FIM:

Factor I/membrane attack complex 6/7 module

LR:

Low density lipoprotein receptor class A repeat

MAC:

Membrane attack complex

MACPF:

Membrane attack complex/perforin

MBLs:

Manose binding lectins

MG:

Macroglobulin

PFPs:

Pore-forming proteins

poly-C9:

polymeric-C9

TMH1 and TMH2:

Transmembrane hairpin 1 and transmembrane hairpin 2

TS:

Thrombospondin type 1 repeat

References

  1. Aleshin AE, DiScipio RG, Stec B, Liddington RC (2012) Crystal structure of C5b-6 suggests structural basis for priming assembly of the membrane attack complex. J Biol Chem 287:19642–19652

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Aleshin AE, Schraufstatter IU, Stec B, Bankston LA, Liddington RC, DiScipio RG (2012) Structure of complement C6 suggests a mechanism for initiation and unidirectional, sequential assembly of membrane attack complex (MAC). J Biol Chem 287:10210–10222

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Alouf JE (2001) Pore-forming bacterial protein toxins: an overview. Curr Top Microbiol Immunol 257:1–14

    CAS  PubMed  Google Scholar 

  4. Amiguet P, Brunner J, Tschopp J (1985) The membrane attack complex of complement: lipid insertion of tubular and nontubular polymerized C9. Biochemistry 24:7328–7334

    CAS  PubMed  Google Scholar 

  5. Amino R, Giovannini D, Thiberge S, Gueirard P, Boisson B, Dubremetz JF, Prevost MC, Ishino T, Yuda M, Menard R (2008) Host cell traversal is important for progression of the malaria parasite through the dermis to the liver. Cell Host Microbe 3:88–96

    CAS  PubMed  Google Scholar 

  6. Anderluh G, Lakey JH (2008) Disparate proteins use similar architectures to damage membranes. Trends Biochem Sci 33:482–490

    CAS  PubMed  Google Scholar 

  7. Bamford DH, Grimes JM, Stuart DI (2005) What does structure tell us about virus evolution? Curr Opin Struct Biol 15:655–663

    CAS  PubMed  Google Scholar 

  8. Baran K, Dunstone M, Chia J, Ciccone A, Browne KA, Clarke CJP, Lukoyanova N, Saibil H, Whisstock JC, Voskoboinik I, Trapani JA (2009) The molecular basis for perforin oligomerization and transmembrane pore assembly. Immunity 30:684–695

    CAS  PubMed  Google Scholar 

  9. Bariety J, Hinglais N, Bhakdi S, Mandet C, Rouchon M, Kazatchkine MD (1989) Immunohistochemical study of complement S protein (vitronectin) in normal and diseased human kidneys: relationship to neoantigens of the C5b-9 terminal complex. Clin Exp Immunol 75:76–81

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Benz R, Schmid A, Wiedmer T, Sims PJ (1986) Single-channel analysis of the conductance fluctuations induced in lipid bilayer membranes by complement proteins C5b-9. J Membr Biol 94:37–45

    CAS  PubMed  Google Scholar 

  11. Bhakdi S, Bhakdi-Lehnen B, Tranum-Jensen J (1979) Proteolytic transformation of SC5b-9 into an amphiphilic macromolecule resembling the C5b-9 membrane attack complex of complement. Immunology 37:901–912

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Bhakdi S, Kuller G, Muhly M, Fromm S, Seibert G, Parrisius J (1987) Formation of transmural complement pores in serum-sensitive Escherichia coli. Infect Immun 55:206–210

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Bhakdi S, Tranum-Jensen J (1984) On the cause and nature of C9-related heterogeneity of terminal complement complexes generated on target erythrocytes through the action of whole serum. J Immunol 133:1453–1463

    CAS  PubMed  Google Scholar 

  14. Bhakdi S, Tranum-Jensen J (1986) C5b-9 assembly: average binding of one C9 molecule to C5b-8 without poly-C9 formation generates a stable transmembrane pore. J Immunol 136:2999–3005

    CAS  PubMed  Google Scholar 

  15. Bhakdi S, Tranum-Jensen J (1991) Complement lysis: a hole is a hole. Immunol Today 12:318–320 (discussion 321)

    Google Scholar 

  16. Bhakdi S, Tranum-Jensen J, Klump O (1980) The terminal membrane C5b-9 complex of human complement. Evidence for the existence of multiple protease-resistant polypeptides that form the trans-membrane complement channel. J Immunol 124:2451–2457

    CAS  PubMed  Google Scholar 

  17. Bhakdi S, Tranum-Jensen J, Sziegoleit A (1985) Mechanism of membrane damage by streptolysin-O. Infect Immun 47:52–60

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Biesecker G, Lachmann P, Henderson R (1993) Structure of complement poly-C9 determined in projection by cryo-electron microscopy and single particle analysis. Mol Immunol 30:1369–1382

    CAS  PubMed  Google Scholar 

  19. Bodian DL, Davis SJ, Morgan BP, Rushmere NK (1997) Mutational analysis of the active site and antibody epitopes of the complement-inhibitory glycoprotein, CD59. J Exp Med 185:507–516

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Bork P, Beckmann G (1993) The CUB domain. A widespread module in developmentally regulated proteins. J Mol Biol 231:539–545

    CAS  PubMed  Google Scholar 

  21. Boros T, Dourmashkin RR, Humphrey JH (1964) Lesions in erythrocyte membranes caused by immune haemolysis. Nature 202:251–252

    Google Scholar 

  22. Bramham J, Thai CT, Soares DC, Uhrin D, Ogata RT, Barlow PN (2005) Functional insights from the structure of the multifunctional C345C domain of C5 of complement. J Biol Chem 280:10636–10645

    CAS  PubMed  Google Scholar 

  23. Brannen CL, Sodetz JM (2007) Incorporation of human complement C8 into the membrane attack complex is mediated by a binding site located within the C8beta MACPF domain. Mol Immunol 44:960–965

    CAS  PubMed  Google Scholar 

  24. Bubeck D, Roversi P, Donev R, Morgan BP, Llorca O, Lea SM (2011) Structure of human complement C8, a precursor to membrane attack. J Mol Biol 405:325–330

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Chakravarti DN, Chakravarti B, Parra CA, Müller-Eberhard HJ (1989) Structural homology of complement protein C6 with other channel-forming proteins of complement. Proc Natl Acad Sci USA 86:2799–2803

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Chiswell B, Lovelace LL, Brannen C, Ortlund EA, Lebioda L, Sodetz JM (2007) Structural features of the ligand binding site on human complement protein C8gamma: a member of the lipocalin family. Biochim Biophys Acta 1774:637–644

    CAS  PubMed  Google Scholar 

  27. Czajkowsky DM, Hotze EM, Shao Z, Tweten RK (2004) Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. EMBO J 23:3206–3215

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Dankert JR, Esser AF (1985) Proteolytic modification of human complement protein C9: loss of poly(C9) and circular lesion formation without impairment of function. Proc Natl Acad Sci USA 82:2128–2132

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Dankert JR, Shiver JW, Esser AF (1985) Ninth component of complement: self-aggregation and interaction with lipids. Biochemistry 24:2754–2762

    CAS  PubMed  Google Scholar 

  30. DiScipio RG (1981) The conversion of human complement component C5 into fragment C5b by the alternative-pathway C5 convertase. Biochem J 199:497–504

    CAS  PubMed Central  PubMed  Google Scholar 

  31. DiScipio RG (1992) Formation and structure of the C5b-7 complex of the lytic pathway of complement. J Biol Chem 267:17087–17094

    CAS  PubMed  Google Scholar 

  32. DiScipio RG, Chakravarti DN, Müller-Eberhard HJ, Fey GH (1988) The structure of human complement component C7 and the C5b-7 complex. J Biol Chem 263:549–560

    CAS  PubMed  Google Scholar 

  33. DiScipio RG, Gehring MR, Podack ER, Kan CC, Hugli TE, Fey GH (1984) Nucleotide sequence of cDNA and derived amino acid sequence of human complement component C9. Proc Natl Acad Sci USA 81:7298–7302

    CAS  PubMed Central  PubMed  Google Scholar 

  34. DiScipio RG, Hugli TE (1985) The architecture of complement component C9 and poly(C9). J Biol Chem 260:14802–14809

    CAS  PubMed  Google Scholar 

  35. DiScipio RG, Hugli TE (1989) The molecular architecture of human complement component C6. J Biol Chem 264:16197–16206

    CAS  PubMed  Google Scholar 

  36. DiScipio RG, Linton SM, Rushmere NK (1999) Function of the factor I modules (FIMS) of human complement component C6. J Biol Chem 274:31811–31818

    CAS  PubMed  Google Scholar 

  37. DiScipio RG, Smith CA, Müller-Eberhard HJ, Hugli TE (1983) The activation of human complement component C5 by a fluid phase C5 convertase. J Biol Chem 258:10629–10636

    CAS  PubMed  Google Scholar 

  38. Dowd KJ, Tweten RK (2012) The cholesterol-dependent cytolysin signature motif: a critical element in the allosteric pathway that couples membrane binding to pore assembly. PLoS Pathog 8:e1002787

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Dramsi S, Cossart P (2003) Listeriolysin O-mediated calcium influx potentiates entry of Listeria monocytogenes into the human Hep-2 epithelial cell line. Infect Immun 71:3614–3618

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Dunstone MA, Tweten RK (2012) Packing a punch: the mechanism of pore formation by cholesterol dependent cytolysins and membrane attack complex/perforin-like proteins. Curr Opin Struct Biol 22:342–349

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Edmondson JC, Liem RK, Kuster JE, Hatten ME (1988) Astrotactin: a novel neuronal cell surface antigen that mediates neuron-astroglial interactions in cerebellar microcultures. J Cell Biol 106:505–517

    CAS  PubMed  Google Scholar 

  42. Eitel J, Suttorp N, Opitz B (2010) Innate immune recognition and inflammasome activation in listeria monocytogenes infection. Front Microbiol 1:149

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Enoch HG, Fleming PJ, Strittmatter P (1977) Cytochrome b5 and cytochrome b5 reductase-phospholipid vesicles. Intervesicle protein transfer and oreintation factors in protein-protein interactions. J Biol Chem 252:5656–5660

    CAS  PubMed  Google Scholar 

  44. Esser AF (1991) Big MAC attack: complement proteins cause leaky patches. Immunol Today 12:316–318 (discussion 321)

    Google Scholar 

  45. Forneris F, Wu J, Gros P (2012) The modular serine proteases of the complement cascade. Curr Opin Struct Biol 22:333–341

    CAS  PubMed  Google Scholar 

  46. Fredslund F, Jenner L, Husted LB, Nyborg J, Andersen GR, Sottrup-Jensen L (2006) The structure of bovine complement component three reveals the basis for thioester function. J Mol Biol 361:115–127

    CAS  PubMed  Google Scholar 

  47. Fredslund F, Laursen NS, Roversi P, Jenner L, Oliveira CLP, Pedersen JS, Nunn MA, Lea SM, Discipio R, Sottrup-Jensen L, Andersen GR (2008) Structure of and influence of a tick complement inhibitor on human complement component 5. Nat Immunol 9:753–760

    CAS  PubMed  Google Scholar 

  48. Gedde MM, Higgins DE, Tilney LG, Portnoy DA (2000) Role of listeriolysin O in cell-to-cell spread of Listeria monocytogenes. Infect Immun 68:999–1003

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Gerard C, Gerard NP (1994) C5A anaphylatoxin and its seven transmembrane-segment receptor. Annu Rev Immunol 12:775–808

    CAS  PubMed  Google Scholar 

  50. Gerard NP, Gerard C (1991) The chemotactic receptor for human C5a anaphylatoxin. Nature 349:614–617

    CAS  PubMed  Google Scholar 

  51. Gilbert RJ (2005) Inactivation and activity of cholesterol-dependent cytolysins: what structural studies tell us. Structure 13:1097–1106

    CAS  PubMed  Google Scholar 

  52. Gilbert RJ, Jiménez JL, Chen S, Tickle IJ, Rossjohn J, Parker M, Andrew PW, Saibil HR (1999) Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin of streptococcus pneumoniae. Cell 97:647–655

    CAS  PubMed  Google Scholar 

  53. Gilbert RJC (2010) Cholesterol-dependent cytolysins. Adv Exp Med Biol 677:56–66

    CAS  PubMed  Google Scholar 

  54. Gilbert RJC, Mikelj M, Dalla Serra M, Froelich CJ, Anderluh G (2013) Effects of MACPF/CDC proteins on lipid membranes. Cell Mol Life Sci 70:2083–2098

    CAS  PubMed  Google Scholar 

  55. Hadders MA, Beringer DX, Gros P (2007) Structure of C8alpha-MACPF reveals mechanism of membrane attack in complement immune defense. Science 317:1552–1554

    CAS  PubMed  Google Scholar 

  56. Hadders MA, Bubeck D, Roversi P, Hakobyan S, Forneris F, Morgan BP, Pangburn MK, Llorca O, Lea SM, Gros P (2012) Assembly and regulation of the membrane attack complex based on structures of C5b6 and sC5b9. Cell Rep 1:200–207

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Hadding U, Muller-Eberhard HJ (1969) The ninth component of human complement: isolation, description and mode of action. Immunology 16:719–735

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Haefliger JA, Tschopp J, Vial N, Jenne DE (1989) Complete primary structure and functional characterization of the sixth component of the human complement system. Identification of the C5b-binding domain in complement C6. J Biol Chem 264:18041–18051

    CAS  PubMed  Google Scholar 

  59. Hamilton KK, Zhao J, Sims PJ (1993) Interaction between apolipoproteins A-I and A-II and the membrane attack complex of complement. Affinity of the apoproteins for polymeric C9. J Biol Chem 268:3632–3638

    CAS  PubMed  Google Scholar 

  60. Hammer CH, Nicholson A, Mayer MM (1975) On the mechanism of cytolysis by complement: evidence on insertion of C5b and C7 subunits of the C5b, 6, 7 complex into phospholipid bilayers of erythrocyte membranes. Proc Natl Acad Sci USA 72:5076–5080

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Hobart MJ, Fernie BA, DiScipio RG (1995) Structure of the human C7 gene and comparison with the C6, C8A, C8B, and C9 genes. J Immunol 154:5188–5194

    CAS  PubMed  Google Scholar 

  62. Hotze EM, Tweten RK (2012) Membrane assembly of the cholesterol-dependent cytolysin pore complex. Biochim Biophys Acta 1818:1028–1038

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Huang Y, Qiao F, Abagyan R, Hazard S, Tomlinson S (2006) Defining the CD59-C9 binding interaction. J Biol Chem 281:27398–27404

    CAS  PubMed  Google Scholar 

  64. Huang Y, Smith CA, Song H, Morgan BP, Abagyan R, Tomlinson S (2005) Insights into the human CD59 complement binding interface toward engineering new therapeutics. J Biol Chem 280:34073–34079

    CAS  PubMed  Google Scholar 

  65. Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR, Lambris JD, Warner RL, Flierl MA, Hoesel LM, Gebhard F, Younger JG, Drouin SM, Wetsel RA, Ward PA (2006) Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 12:682–687

    CAS  PubMed  Google Scholar 

  66. Janssen BJ, Huizinga EG, Raaijmakers HC, Roos A, Daha MR, Nilsson-Ekdahl K, Nilsson B, Gros P (2005) Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437:505–511

    CAS  PubMed  Google Scholar 

  67. Jenne DE, Tschopp J (1992) Clusterin: the intriguing guises of a widely expressed glycoprotein. Trends Biochem Sci 17:154–159

    CAS  PubMed  Google Scholar 

  68. Johnson S, Brooks NJ, Smith RAG, Lea SM, Bubeck D (2013) Structural basis for recognition of the pore-forming toxin intermedilysin by human complement receptor CD59. Cell Rep 3:1369–1377

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Joiner KA, Schmetz MA, Sanders ME, Murray TG, Hammer CH, Dourmashkin R, Frank MM (1985) Multimeric complement component C9 is necessary for killing of Escherichia coli J5 by terminal attack complex C5b-9. Proc Natl Acad Sci USA 82:4808–4812

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Kafsack BF, Pena JD, Coppens I, Ravindran S, Boothroyd JC, Carruthers VB (2009) Rapid membrane disruption by a perforin-like protein facilitates parasite exit from host cells. Science 323:530–533

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Kidmose RT, Laursen NS, Dobó J, Kjaer TR, Sirotkina S, Yatime L, Sottrup-Jensen L, Thiel S, Gál P, Andersen GR (2012) Structural basis for activation of the complement system by component C4 cleavage. Proc Natl Acad Sci USA 109:15425–15430

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Kolb WP, Haxby JA, Arroyave CM, Müller-Eberhard HJ (1973) The membrane attack mechanism of complement. Reversible interactions among the five native components in free solution. J Exp Med 138:428–437

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Kolb WP, Müller-Eberhard HJ (1974) Mode of action of human C9: adsorption of multiple C9 molecules to cell-bound C8. J Immunol 113:479–488

    CAS  PubMed  Google Scholar 

  74. Kondos SC, Hatfaludi T, Voskoboinik I, Trapani JA, Law RHP, Whisstock JC, Dunstone MA (2010) The structure and function of mammalian membrane-attack complex/perforin-like proteins. Tissue Antigens 76:341–351

    CAS  PubMed  Google Scholar 

  75. Kontermann R, Rauterberg EW (1989) N-deglycosylation of human complement component C9 reduces its hemolytic activity. Mol Immunol 26:1125–1132

    CAS  PubMed  Google Scholar 

  76. LaChapelle S, Tweten RK, Hotze EM (2009) Intermedilysin-receptor interactions during assembly of the pore complex: assembly intermediates increase host cell susceptibility to complement-mediated lysis. J Biol Chem 284:12719–12726

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Lachmann PJ, Thompson RA (1970) Reactive lysis: the complement-mediated lysis of unsensitized cells. II. The characterization of activated reactor as C56 and the participation of C8 and C9. J Exp Med 131:643–657

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Laine RO, Esser AF (1989) Identification of the discontinuous epitope in human complement protein C9 recognized by anti-melittin antibodies. J Immunol 143:553–557

    CAS  PubMed  Google Scholar 

  79. Laudisi F, Spreafico R, Evrard M, Hughes TR, Mandriani B, Kandasamy M, Morgan BP, Sivasankar B, Mortellaro A (2013) Cutting edge: the NLRP3 inflammasome links complement-mediated inflammation and IL-1β release. J Immunol 191:1006–1010

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Laursen NS, Andersen KR, Braren I, Spillner E, Sottrup-Jensen L, Andersen GR (2011) Substrate recognition by complement convertases revealed in the C5-cobra venom factor complex. EMBO J 30:606–616

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Laursen NS, Gordon N, Hermans S, Lorenz N, Jackson N, Wines B, Spillner E, Christensen JB, Jensen M, Fredslund F, Bjerre M, Sottrup-Jensen L, Fraser JD, Andersen GR (2010) Structural basis for inhibition of complement C5 by the SSL7 protein from Staphylococcus aureus. Proc Natl Acad Sci USA 107:3681–3686

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Law RHP, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, D'Angelo ME, Orlova EV, Coulibaly F, Verschoor S, Browne KA, Ciccone A, Kuiper MJ, Bird PI, Trapani JA, Saibil HR, Whisstock JC (2010) The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 468:447–451

    Google Scholar 

  83. Leto TL, Roseman MA, Holloway PW (1980) Mechanism of exchange of cytochrome b5 between phosphatidylcholine vesicles. Biochemistry 19:1911–1916

    CAS  PubMed  Google Scholar 

  84. Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305 (Database issue)

    Google Scholar 

  85. Lewis RD, Jackson CL, Morgan BP, Hughes TR (2010) The membrane attack complex of complement drives the progression of atherosclerosis in apolipoprotein E knockout mice. Mol Immunol 47:1098–1105

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Lichtenheld MG, Olsen KJ, Lu P, Lowrey DM, Hameed A, Hengartner H, Podack ER (1988) Structure and function of human perforin. Nature 335:448–451

    CAS  PubMed  Google Scholar 

  87. Linscott WD, Nishioka K (1963) Components of Guinea pig complement. Ii. Separation of serum fractions essential for immune hemolysis. J Exp Med 118:795–815

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Lockert DH, Kaufman KM, Chang CP, Husler T, Sodetz JM, Sims PJ (1995) Identity of the segment of human complement C8 recognized by complement regulatory protein CD59. J Biol Chem 270:19723–19728

    CAS  PubMed  Google Scholar 

  89. Lovelace LL, Chiswell B, Slade DJ, Sodetz JM, Lebioda L (2008) Crystal structure of complement protein C8gamma in complex with a peptide containing the C8gamma binding site on C8alpha: implications for C8gamma ligand binding. Mol Immunol 45:750–756

    CAS  PubMed  Google Scholar 

  90. Lovelace LL, Cooper CL, Sodetz JM, Lebioda L (2011) Structure of human C8 protein provides mechanistic insight into membrane pore formation by complement. J Biol Chem 286:17585–17592

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Lukoyanova N, Saibil HR (2008) Friend or foe: the same fold for attack and defense. Trends Immunol 29:51–53

    CAS  PubMed  Google Scholar 

  92. Malinski JA, Nelsestuen GL (1989) Membrane permeability to macromolecules mediated by the membrane attack complex. Biochemistry 28:61–70

    CAS  PubMed  Google Scholar 

  93. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232

    CAS  PubMed  Google Scholar 

  94. Markiewski MM, Lambris JD (2007) The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol 171:715–727

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Markiewski MM, Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD (2007) Complement and coagulation: strangers or partners in crime? Trends Immunol 28:184–192

    CAS  PubMed  Google Scholar 

  96. Martin DE, Chiu FJ, Gigli I, Muller-Eberhard HJ (1987) Killing of human melanoma cells by the membrane attack complex of human complement as a function of its molecular composition. J Clin Invest 80:226–233

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Masson D, Tschopp J (1985) Isolation of a lytic, pore-forming protein (perforin) from cytolytic T-lymphocytes. J Biol Chem 260:9069–9072

    CAS  PubMed  Google Scholar 

  98. Mayer MM (1972) Mechanism of cytolysis by complement. Proc Natl Acad Sci USA 69:2954–2958

    CAS  PubMed Central  PubMed  Google Scholar 

  99. McNeela EA, Burke A, Neill DR, Baxter C, Fernandes VE, Ferreira D, Smeaton S, El-Rachkidy R, McLoughlin RM, Mori A, Moran B, Fitzgerald KA, Tschopp J, Pétrilli V, Andrew PW, Kadioglu A, Lavelle EC (2010) Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog 6:e1001191

    PubMed Central  PubMed  Google Scholar 

  100. Meri S, Morgan BP, Davies A, Daniels RH, Olavesen MG, Waldmann H, Lachmann PJ (1990) Human protectin (CD59), an 18,000–20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology 71:1–9

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Meri S, Morgan BP, Wing M, Jones J, Davies A, Podack E, Lachmann PJ (1990) Human protectin (CD59), an 18-20-kD homologous complement restriction factor, does not restrict perforin-mediated lysis. J Exp Med 172:367–370

    CAS  PubMed  Google Scholar 

  102. Mollnes TE, Lea T, Tschopp J (1989) Activation-dependent epitopes in the terminal complement pathway. Complement Inflamm 6:223–235

    CAS  PubMed  Google Scholar 

  103. Morgan PJ, Hyman SC, Byron O, Andrew PW, Mitchell TJ, Rowe AJ (1994) Modeling the bacterial protein toxin, pneumolysin, in its monomeric and oligomeric form. J Biol Chem 269:25315–25320

    CAS  PubMed  Google Scholar 

  104. Moskovich O, Fishelson Z (2007) Live cell imaging of outward and inward vesiculation induced by the complement c5b-9 complex. J Biol Chem 282(41):29977–29986

    CAS  PubMed  Google Scholar 

  105. Müller-Eberhard HJ (1986) The membrane attack complex of complement. Ann Rev Immunol 4:503–528

    Google Scholar 

  106. Müller-Eberhard HJ, Schreiber RD (1980) Molecular biology and chemistry of the alternative pathway of complement. Adv Immunol 29:1–53

    PubMed  Google Scholar 

  107. Nabholz M, Tschopp J (1989) CTL-mediated cytolysis: perforin and alternative pathways? Immunol Lett 20:179–180

    CAS  PubMed  Google Scholar 

  108. Ng SC, Rao AG, Howard OM, Sodetz JM (1987) The eighth component of human complement: evidence that it is an oligomeric serum protein assembled from products of three different genes. Biochemistry 26:5229–5233

    CAS  PubMed  Google Scholar 

  109. Ninomiya H, Sims PJ (1992) The human complement regulatory protein CD59 binds to the alpha-chain of C8 and to the “b”domain of C9. J Biol Chem 267:13675–13680

    CAS  PubMed  Google Scholar 

  110. Ortlund E, Parker CL, Schreck SF, Ginell S, Minor W, Sodetz JM, Lebioda L (2002) Crystal structure of human complement protein C8gamma at 1.2 Å resolution reveals a lipocalin fold and a distinct ligand binding site. Biochemistry 41:7030–7037

    CAS  PubMed  Google Scholar 

  111. Palmer M, Harris R, Freytag C, Kehoe M, Tranum-Jensen J, Bhakdi S (1998) Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization. EMBO J 17:1598–1605

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Parker CL, Sodetz JM (2002) Role of the human C8 subunits in complement-mediated bacterial killing: evidence that C8 gamma is not essential. Mol Immunol 39:453–458

    CAS  PubMed  Google Scholar 

  113. Peitsch MC, Amiguet P, Guy R, Brunner J, Maizel JV, Tschopp J (1990) Localization and molecular modelling of the membrane-inserted domain of the ninth component of human complement and perforin. Mol Immunol 27:589–602

    CAS  PubMed  Google Scholar 

  114. Perkins SJ, Smith KF, Nealis AS, Lachmann PJ, Harrison RA (1990) Structural homologies of component C5 of human complement with components C3 and C4 by neutron scattering. Biochemistry 29:175–180

    CAS  PubMed  Google Scholar 

  115. Petersen BH, Lee TJ, Snyderman R, Brooks GF (1979) Neisseria meningitidis and Neisseria gonorrhoeae bacteremia associated with C6, C7, or C8 deficiency. Ann Intern Med 90:917–920

    CAS  PubMed  Google Scholar 

  116. Phelan MM, Thai C-T, Herbert AP, Bella J, Uhrín D, Ogata RT, Barlow PN, Bramham J (2009) 1H, 15 N and 13C resonance assignment of the pair of Factor-I like modules of the complement protein C7. Biomol NMR Assign 3:49–52

    CAS  PubMed  Google Scholar 

  117. Phelan MM, Thai C-T, Soares DC, Ogata RT, Barlow PN, Bramham J (2009) Solution structure of factor I-like modules from complement C7 reveals a pair of follistatin domains in compact pseudosymmetric arrangement. J Biol Chem 284:19637–19649

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Podack ER (1984) Molecular composition of the tubular structure of the membrane attack complex of complement. J Biol Chem 259:8641–8647

    CAS  PubMed  Google Scholar 

  119. Podack ER, Dennert G (1983) Assembly of two types of tubules with putative cytolytic function by cloned natural killer cells. Nature 302:442–445

    CAS  PubMed  Google Scholar 

  120. Podack ER, Esser AF, Biesecker G, Müller-Eberhard HJ (1980) Membrane attack complex of complement: a structural analysis of its assembly. J Exp Med 151:301–313

    CAS  PubMed  Google Scholar 

  121. Podack ER, Kolb WP, Esser AF, Müller-Eberhard HJ (1979) Structural similarities between C6 and C7 of human complement. J Immunol 123:1071–1077

    CAS  PubMed  Google Scholar 

  122. Podack ER, Kolb WP, Muller-Eberhard HJ (1977) The SC5b-7 complex: formation, isolation, properties, and subunit composition. J Immunol 119:2024–2029

    CAS  PubMed  Google Scholar 

  123. Podack ER, Müller-Eberhard HJ (1980) SC5b-9 complex of complement: formation of the dimeric membrane attack complex by removal of S-protein. J Immunol 124:1779–1783

    CAS  PubMed  Google Scholar 

  124. Podack ER, Müller-Eberhard HJ, Horst H, Hoppe W (1982) Membrane attach complex of complement (MAC): three-dimensional analysis of MAC-phospholipid vesicle recombinants. J Immunol 128:2353–2357

    CAS  PubMed  Google Scholar 

  125. Podack ER, Preissner KT, Müller-Eberhard HJ (1984) Inhibition of C9 polymerization within the SC5b-9 complex of complement by S-protein. Acta Pathol Microbiol Immunol Scand Suppl 284:89–96

    CAS  PubMed  Google Scholar 

  126. Podack ER, Tschoop J, Müller-Eberhard HJ (1982) Molecular organization of C9 within the membrane attack complex of complement. Induction of circular C9 polymerization by the C5b-8 assembly. J Exp Med 156:268–282

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Podack ER, Tschopp J (1982) Circular polymerization of the ninth component of complement. Ring closure of the tubular complex confers resistance to detergent dissociation and to proteolytic degradation. J Biol Chem 257:15204–15212

    CAS  PubMed  Google Scholar 

  128. Podack ER, Tschopp J (1982) Polymerization of the ninth component of complement (C9): formation of poly(C9) with a tubular ultrastructure resembling the membrane attack complex of complement. Proc Natl Acad Sci USA 79:574–578

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Podack ER, Tschopp J (1984) Membrane attack by complement. Mol Immunol 21:589–603

    CAS  PubMed  Google Scholar 

  130. Polley MJ, Mueller-Eberhard HJ, Feldman JD (1971) Production of ultrastructural membrane lesions by the fifth component of complement 133:53–62

    CAS  Google Scholar 

  131. Ponting CP (1999) Chlamydial homologues of the MACPF (MAC/perforin) domain. Curr Biol 9:R911–R913

    CAS  PubMed  Google Scholar 

  132. Praper T, Sonnen AF-P, Kladnik A, Andrighetti AO, Viero G, Morris KJ, Volpi E, Lunelli L, Dalla Serra M, Froelich CJ, Gilbert RJC, Anderluh G (2011) Perforin activity at membranes leads to invaginations and vesicle formation. Proc Natl Acad Sci USA 108:21016–21021

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Preissner KP, Podack ER, Müller-Eberhard HJ (1989) SC5b-7, SC5b-8 and SC5b-9 complexes of complement: ultrastructure and localization of the S-protein (vitronectin) within the macromolecules. Eur J Immunol 19:69–75

    CAS  PubMed  Google Scholar 

  134. Preissner KT (1991) Structure and biological role of vitronectin. Annu Rev Cell Biol 7:275–310

    CAS  PubMed  Google Scholar 

  135. Preissner KT, Podack ER, Müller-Eberhard HJ (1985) The membrane attack complex of complement: relation of C7 to the metastable membrane binding site of the intermediate complex C5b-7. J Immunol 135:445–451

    CAS  PubMed  Google Scholar 

  136. Preissner KT, Podack ER, Müller-Eberhard HJ (1985) Self-association of the seventh component of human complement (C7): dimerization and polymerization. J Immunol 135:452–458

    CAS  Google Scholar 

  137. Ramachandran R, Tweten RK, Johnson AE (2004) Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit beta-strand alignment. Nat Struct Mol Biol 11:697–705

    CAS  PubMed  Google Scholar 

  138. Ramm LE, Whitlow MB, Mayer MM (1982) Transmembrane channel formation by complement: functional analysis of the number of C5b6, C7, C8, and C9 molecules required for a single channel. Proc Natl Acad Sci USA 79:4751–4755

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Ramm LE, Whitlow MB, Mayer MM (1985) The relationship between channel size and the number of C9 molecules in the C5b-9 complex. J Immunol 134:2594–2599

    CAS  PubMed  Google Scholar 

  140. Rawal N, Pangburn M (2001) Formation of high-affinity C5 convertases of the alternative pathway of complement. J Immunol 166:2635–2642

    CAS  PubMed  Google Scholar 

  141. Rawal N, Pangburn MK (2003) Formation of high affinity C5 convertase of the classical pathway of complement. J Biol Chem 278:38476–38483

    CAS  PubMed  Google Scholar 

  142. Rollins SA, Zhao J, Ninomiya H, Sims PJ (1991) Inhibition of homologous complement by CD59 is mediated by a species-selective recognition conferred through binding to C8 within C5b-8 or C9 within C5b-9. J Immunol 146:2345–2351

    CAS  PubMed  Google Scholar 

  143. Rosado CJ, Buckle AM, Law RHP, Butcher RE, Kan W-T, Bird CH, Ung K, Browne KA, Baran K, Bashtannyk-Puhalovich TA, Faux NG, Wong W, Porter CJ, Pike RN, Ellisdon AM, Pearce MC, Bottomley SP, Emsley J, Smith AI, Rossjohn J, Hartland EL, Voskoboinik I, Trapani JA, Bird PI, Dunstone MA, Whisstock JC (2007) A common fold mediates vertebrate defense and bacterial attack. Science 317:1548–1551

    CAS  PubMed  Google Scholar 

  144. Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RHP, Buckle AM, Voskoboinik I, Bird PI, Trapani JA, Whisstock JC, Dunstone MA (2008) The MACPF/CDC family of pore-forming toxins. Cell Microbiol 10:1765–1774

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, Parker MW (1997) Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89:685–692

    CAS  PubMed  Google Scholar 

  146. Rother RP, Rollins SA, Mojcik CF, Brodsky RA, Bell L (2007) Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol 25:1256–1264

    CAS  PubMed  Google Scholar 

  147. Rubins JB, Duane PG, Clawson D, Charboneau D, Young J, Niewoehner DE (1993) Toxicity of pneumolysin to pulmonary alveolar epithelial cells. Infect Immun 61(4):1352–1358

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Sato TK, Tweten RK, Johnson AE (2013) Disulfide-bond scanning reveals assembly state and β-strand tilt angle of the PFO β-barrel. Nat Chem Biol 9:383–389

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Schreck SF, Plumb ME, Platteborze PL, Kaufman KM, Michelotti GA, Letson CS, Sodetz JM (1998) Expression and characterization of recombinant subunits of human complement component C8: further analysis of the function of C8 alpha and C8 gamma. J Immunol 161:311–318

    CAS  PubMed  Google Scholar 

  150. Shatursky O, Heuck AP, Shepard LA, Rossjohn J, Parker MW, Johnson AE, Tweten RK (1999) The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 99:293–299

    CAS  PubMed  Google Scholar 

  151. Shepard LA, Heuck AP, Hamman BD, Rossjohn J, Parker MW, Ryan KR, Johnson AE, Tweten RK (1998) Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. Biochemistry 37:14563–14574

    CAS  PubMed  Google Scholar 

  152. Shinkai Y, Takio K, Okumura K (1988) Homology of perforin to the ninth component of complement (C9). Nature 334:525–527

    CAS  PubMed  Google Scholar 

  153. Silversmith RE, Nelsestuen GL (1986) Interaction of complement proteins C5b-6 and C5b-7 with phospholipid vesicles: effects of phospholipid structural features. Biochemistry 25:7717–7725

    CAS  PubMed  Google Scholar 

  154. Sim RB, Tsiftsoglou SA (2004) Proteases of the complement system. Biochem Soc Trans 32:21–27

    CAS  PubMed  Google Scholar 

  155. Sims PJ (1983) Complement pores in erythrocyte membranes. Analysis of C8/C9 binding required for functional membrane damage. Biochim Biophys Acta 732:541–552

    CAS  PubMed  Google Scholar 

  156. Sims PJ, Faioni EM, Wiedmer T, Shattil SJ (1988) Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 263:18205–18212

    CAS  PubMed  Google Scholar 

  157. Sims PJ, Lauf PK (1980) Analysis of solute diffusion across the C5b-9 membrane lesion of complement: evidence that individual C5b-9 complexes do not function as discrete, uniform pores. J Immunol 125:2617–2625

    CAS  PubMed  Google Scholar 

  158. Slade DJ, Lovelace LL, Chruszcz M, Minor W, Lebioda L, Sodetz JM (2008) Crystal structure of the MACPF domain of human complement protein C8 alpha in complex with the C8 gamma subunit. J Mol Biol 379:331–342

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Smith KF, Harrison RA, Perkins SJ (1992) Molecular modeling of the domain structure of C9 of human complement by neutron and X-ray solution scattering. Biochemistry 31:754–764

    CAS  PubMed  Google Scholar 

  160. Sonnen AF-P, Henneke P (2013) Role of pore-forming toxins in neonatal sepsis. Clin Dev Immunol 2013:608456

    PubMed Central  PubMed  Google Scholar 

  161. Steckel EW, Welbaum BE, Sodetz JM (1983) Evidence of direct insertion of terminal complement proteins into cell membrane bilayers during cytolysis. Labeling by a photosensitive membrane probe reveals a major role for the eighth and ninth components. J Biol Chem 258:4318–4324

    CAS  PubMed  Google Scholar 

  162. Stevens LM, Frohnhofer HG, Klingler M, Nusslein-Volhard C (1990) Localized requirement for torso-like expression in follicle cells for development of terminal anlagen of the Drosophila embryo. Nature 346:660–663

    CAS  PubMed  Google Scholar 

  163. Stewart JL, Kolb WP, Sodetz JM (1987) Evidence that C5b recognizes and mediates C8 incorporation into the cytolytic complex of complement. J Immunol 139:1960–1964

    CAS  PubMed  Google Scholar 

  164. Stewart JL, Monahan JB, Brickner A, Sodetz JM (1984) Measurement of the ratio of the eighth and ninth components of human complement on complement-lysed membranes. Biochemistry 23:4016–4022

    CAS  PubMed  Google Scholar 

  165. Stolfi RL (1968) Immune lytic transformation: a state of irreversible damage generated as a result of the reaction of the eighth component in the guinea pig complement system. J Immunol 100:46–54

    CAS  PubMed  Google Scholar 

  166. Taylor KM, Trimby AR, Campbell AK (1997) Mutation of recombinant complement component C9 reveals the significance of the N-terminal region for polymerization. Immunology 91:20–27

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Thai C-T, Ogata RT (2004) Complement components C5 and C7: recombinant factor I modules of C7 bind to the C345C domain of C5. J Immunol 173:4547–4552

    CAS  PubMed  Google Scholar 

  168. Thai C-T, Ogata RT (2005) Recombinant C345C and factor I modules of complement components C5 and C7 inhibit C7 incorporation into the complement membrane attack complex. J Immunol 174:6227–6232

    CAS  PubMed  Google Scholar 

  169. Thompson RA, Lachmann PJ (1970) Reactive lysis: the complement-mediated lysis of unsensitized cells. I. The characterization of the indicator factor and its identification as C7. J Exp Med 131:629–641

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Tilley SJ, Orlova EV, Gilbert RJC, Andrew PW, Saibil HR (2005) Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121:247–256

    CAS  PubMed  Google Scholar 

  171. Tomasini BR, Mosher DF (1986) On the identity of vitronectin and S-protein: immunological crossreactivity and functional studies. Blood 68:737–742

    CAS  PubMed  Google Scholar 

  172. Torisu M, Yokoyama T, Kohler PF, Durst AL, Martineau G, Schroter G, Amemiya H, Groth CG, Starzl TE (1972) Serum complement after orthotopic transplantation of the human liver. Clin Exp Immunol 12:21–30

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Trabue C, Pearman R, Doering T (2013) Pyogenic brain and lung abscesses due to streptococcus intermedius. J Gen Intern Med. doi:10.1007/s11606-013-2565-3

    PubMed  Google Scholar 

  174. Triantafilou K, Hughes TR, Triantafilou M, Morgan BP (2013) The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J Cell Sci 126:2903–2913

    CAS  PubMed  Google Scholar 

  175. Tschopp J (1984) Ultrastructure of the membrane attack complex of complement. Heterogeneity of the complex caused by different degree of C9 polymerization. J Biol Chem 259:7857–7863

    CAS  PubMed  Google Scholar 

  176. Tschopp J, Engel A, Podack ER (1984) Molecular weight of poly(C9). 12 to 18 C9 molecules form the transmembrane channel of complement. J Biol Chem 259:1922–1928

    CAS  PubMed  Google Scholar 

  177. Tschopp J, Masson D, Stanley KK (1986) Structural/functional similarity between proteins involved in complement- and cytotoxic T-lymphocyte-mediated cytolysis. Nature 322:831–834

    CAS  PubMed  Google Scholar 

  178. Tschopp J, Podack ER (1981) Membranolysis by the ninth component of human complement. Biochem Biophys Res Commun 100:1409–1414

    CAS  PubMed  Google Scholar 

  179. Tschopp J, Podack ER, Müller-Eberhard HJ (1982) Ultrastructure of the membrane attack complex of complement: detection of the tetramolecular C9-polymerizing complex C5b-8. Proc Natl Acad Sci USA 79:7474–7478

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Voskoboinik I, Smyth MJ, Trapani JA (2006) Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 6:940–952

    CAS  PubMed  Google Scholar 

  181. Wickham SE, Hotze EM, Farrand AJ, Polekhina G, Nero TL, Tomlinson S, Parker MW, Tweten RK (2011) Mapping the intermedilysin-human CD59 receptor interface reveals a deep correspondence with the binding site on CD59 for complement binding proteins C8alpha and C9. J Biol Chem 286:20952–20962

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Witzenrath M, Pache F, Lorenz D, Koppe U, Gutbier B, Tabeling C, Reppe K, Meixenberger K, Dorhoi A, Ma J, Holmes A, Trendelenburg G, Heimesaat MM, Bereswill S, van der Linden M, Tschopp J, Mitchell TJ, Suttorp N, Opitz B (2011) The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia. J Immunol 187:434–440

    CAS  PubMed  Google Scholar 

  183. Xu Q, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa C, Cai X, Carlton D, Chen C, Chiu HJ, Clayton T, Das D, Deller MC, Duan L, Ellrott K, Farr CL, Feuerhelm J, Grant JC, Grzechnik A, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Lam WW, Marciano D, Miller MD, Morse AT, Nigoghossian E, Nopakun A, Okach L, Puckett C, Reyes R, Tien HJ, Trame CB, van den Bedem H, Weekes D, Wooten T, Yeh A, Zhou J, Hodgson KO, Wooley J, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Wilson IA (2010) Structure of a membrane-attack complex/perforin (MACPF) family protein from the human gut symbiont Bacteroides thetaiotaomicron. Acta Cryst F66:1297–1305

    Google Scholar 

  184. Young JD, Hengartner H, Podack ER, Cohn ZA (1986) Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell 44:849–859

    CAS  PubMed  Google Scholar 

  185. Young JD, Nathan CF, Podack ER, Palladino MA, Cohn ZA (1986) Functional channel formation associated with cytotoxic T-cell granules. Proc Natl Acad Sci USA 83:150–154

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Zalman LS, Muller-Eberhard HJ (1990) Comparison of channels formed by poly C9, C5b-8 and the membrane attack complex of complement. Mol Immunol 27:533–537

    CAS  PubMed  Google Scholar 

  187. Zhang X, Boyar W, Toth MJ, Wennogle L, Gonnella NC (1997) Structural definition of the C5a C terminus by two-dimensional nuclear magnetic resonance spectroscopy. Proteins 28:261–267

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The Center for Chronic Immunodeficiency is supported by a Grant from the German Bundesministerium fü̈r Bildung und Forschung (BMBF 01EO0803). The author would like to thank the editors for the possibility to contribute to this volume.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas F.-P. Sonnen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sonnen, A.FP., Henneke, P. (2014). Structural Biology of the Membrane Attack Complex. In: Anderluh, G., Gilbert, R. (eds) MACPF/CDC Proteins - Agents of Defence, Attack and Invasion. Subcellular Biochemistry, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8881-6_6

Download citation

Publish with us

Policies and ethics