Skip to main content

Genomics of Lactic Acid Bacteria

Abstract

Lactic acid bacteria (LAB) are ‘generally recognised as safe’ microorganisms, and some of them were given the ‘Qualified Presumption of Safety’ status by the European Food Safety Authority. Due to their significant contribution to various industrial applications, many of these organisms were subjected to full genome sequencing projects. Together with the increased amount of published transcriptomics and proteomics data across the entire genome, we have unprecedented opportunities to revisit the important traits of LAB. More importantly, this increased amount of data will aid our understanding of the mechanisms underlying the interaction between LAB and human beings. In this chapter, we focus on the current research progress on LAB genomics and pay particular attention to those species that have played major roles in lactic fermentations. The key features of the genomes and the mechanisms that have been correlated to the beneficial actions of LAB are also discussed. We aim to provide some basic information to our colleagues within the scientific community.

Keywords

  • Lactic acid bacteria
  • Genomics
  • Key features

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-017-8841-0_3
  • Chapter length: 43 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-94-017-8841-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5

References

  • Adams MR. Safety of industrial lactic acid bacteria. J Biotechnol. 1999;68(2–3):171–8.

    Google Scholar 

  • Ai L, Chen C, Zhou F, Wang L, Zhang H, Chen W et al. Complete genome sequence of the probiotic strain Lactobacillus casei BD-II. J Bacteriol. 2011;193(12):3160–1.

    Google Scholar 

  • Ainsworth S, Zomer A, de Jager V, Bottacini F, van Hijum SA, Mahony J et al. Complete genome of Lactococcus lactis subsp. cremoris UC509.9, host for a model Lactococcal P335 bacteriophage. Genome Announc. 2013;1(1):e00119–12.

    Google Scholar 

  • Alcantara C, Revilla-Guarinos A, Zuniga M. Influence of two-component signal transduction systems of Lactobacillus casei BL23 on tolerance to stress conditions. Appl Environ Microbiol. 2010;77(4):1516–9.

    Google Scholar 

  • Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O et al. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci USA. 2005;102(11):3906–12.

    Google Scholar 

  • Aureli P, Capurso L, Castellazzi AM, Clerici M, Giovannini M, Morelli L et al. Probiotics and health: an evidence-based review. Pharmacol Res. 2011;63(5):366–76.

    Google Scholar 

  • Azcarate-Peril MA, Altermann E, Goh YJ, Tallon R, Sanozky-Dawes RB, Pfeiler EA et al. Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Appl Environ Microbiol. 2008;74(15):4610–25.

    Google Scholar 

  • Azcarate-Peril MA, McAuliffe O, Altermann E, Lick S, Russell WM, Klaenhammer TR. Microarray analysis of a two-component regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus . Appl Environ Microbiol. 2005;71(10):5794–804.

    Google Scholar 

  • Barrangou R, Altermann E, Hutkins R, Cano R, Klaenhammer TR. Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus . Proc Natl Acad Sci USA. 2003;100(15):8957–62.

    Google Scholar 

  • Ben Amor K, Vaughan EE, de Vos WM Advanced molecular tools for the identification of lactic acid bacteria. J Nutr. 2007;137(3 Suppl 2):741S–7S. doi:137/3/741S.

    Google Scholar 

  • Berger B, Pridmore RD, Barretto C, Delmas-Julien F, Schreiber K, Arigoni F et al. Similarity and differences in the Lactobacillus acidophilus group identified by polyphasic analysis and comparative genomics. J Bacteriol. 2007;189(4):1311–21.

    Google Scholar 

  • Bergonzelli GE, Granato D, Pridmore RD, Marvin-Guy LF, Donnicola D, Corthesy-Theulaz IE. GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori . Infect Immun. 2006;74(1):425–34.

    Google Scholar 

  • Boekhorst J, Helmer Q, Kleerebezem M, Siezen RJ. Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiology 2006;152(Pt 1):273–80.

    Google Scholar 

  • Boekhorst J, Siezen RJ, Zwahlen MC, Vilanova D, Pridmore RD, Mercenier A et al. The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content. Microbiology 2004;150(Pt 11):3601–11.

    Google Scholar 

  • Boekhorst J, Wels M, Kleerebezem M, Siezen RJ. The predicted secretome of Lactobacillus plantarum WCFS1 sheds light on interactions with its environment. Microbiology 2006;152(Pt 11):3175–83.

    Google Scholar 

  • Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, Kulakauskas S et al. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus . Nat Biotechnol. 2004;22(12):1554–8.

    Google Scholar 

  • Bolotin A, Mauger S, Malarme K, Ehrlich SD, Sorokin A. Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome. Antonie Van Leeuwenhoek. 1999;76(1–4):27–76.

    Google Scholar 

  • Bongaerts GP, Severijnen RS. The beneficial, antimicrobial effect of probiotics. Med Hypotheses. 2001;56(2):174–7.

    Google Scholar 

  • Borneman AR, McCarthy JM, Chambers PJ, Bartowsky EJ. Comparative analysis of the Oenococcus oeni pan genome reveals genetic diversity in industrially-relevant pathways. BMC Genomics. 2012;13:373. doi:1471-2164-13-373.

    Google Scholar 

  • Broadbent JR, Neeno-Eckwall EC, Stahl B, Tandee K, Cai H, Morovic W et al. Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BMC Genomics. 2012;13:533.

    Google Scholar 

  • Buck BL, Altermann E, Svingerud T, Klaenhammer TR. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol. 2005;71(12):8344–51.

    Google Scholar 

  • Burgess C, O’Connell-Motherway M, Sybesma W, Hugenholtz J, van Sinderen D. Riboflavin production in Lactococcus lactis : potential for in situ production of vitamin-enriched foods. Appl Environ Microbiol. 2004;70(10):5769–77.

    Google Scholar 

  • Cai H, Thompson R, Budinich MF, Broadbent JR, Steele JL. Genome sequence and comparative genome analysis of Lactobacillus casei : insights into their niche-associated evolution. Genome Biol Evol. 2009;1:239–57.

    Google Scholar 

  • Callanan M, Kaleta P, O’Callaghan J, O’Sullivan O, Jordan K, McAuliffe O et al. Genome sequence of Lactobacillus helveticus , an organism distinguished by selective gene loss and insertion sequence element expansion. J Bacteriol. 2008;190(2):727–35.

    Google Scholar 

  • Castaldo C, Vastano V, Siciliano RA, Candela M, Vici M, Muscariello L et al. Surface displaced alfa-enolase of Lactobacillus plantarum is a fibronectin binding protein. Microb Cell Fact. 2009;8:14.

    Google Scholar 

  • Chaillou S, Champomier-Verges MC, Cornet M, Crutz-Le Coq AM, Dudez AM, Martin V et al. The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23 K. Nat Biotechnol. 2005;23(12):1527–33.

    Google Scholar 

  • Chang C, Stewart RC. The two-component system. Regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiol. 1998;117(3):723–31.

    Google Scholar 

  • Chen C, Ai L, Zhou F, Wang L, Zhang H, Chen W et al. Complete genome sequence of the probiotic bacterium Lactobacillus casei LC2W. J Bacteriol. 2011;193(13):3419–20.

    Google Scholar 

  • Chopin MC, Chopin A, Rouault A, Galleron N. Insertion and amplification of foreign genes in the Lactococcus lactis subsp. lactis chromosome. Appl Environ Microbiol. 1989;55(7):1769–74.

    Google Scholar 

  • Chopin A, Bolotin A, Sorokin A, Ehrlich SD, Chopin M. Analysis of six prophages in Lactococcus lactis IL1403: different genetic structure of temperate and virulent phage populations. Nucleic Acids Res. 2001;29(3):644–51.

    Google Scholar 

  • Claesson MJ, Li Y, Leahy S, Canchaya C, van Pijkeren JP, Cerdeno-Tarraga AM et al. Multireplicon genome architecture of Lactobacillus salivarius . Proc Natl Acad Sci USA. 2006;103(17):6718–23.

    Google Scholar 

  • Claesson MJ, van Sinderen D, O’Toole PW. Lactobacillus phylogenomics—towards a reclassification of the genus. Int J Syst Evol Microbiol. 2008;58(Pt 12):2945–54.

    Google Scholar 

  • Crowley S, Bottacini F, Mahony J, van Sinderen D. Complete genome sequence of Lactobacillus plantarum strain 16, a broad-spectrum antifungal-producing lactic acid bacterium. Genome Announc. 2013;1(4):e00533–13.

    Google Scholar 

  • Curry A. Archaeology: the milk revolution. Nature 2013;500(7460):20–22.

    Google Scholar 

  • Dal Bello F, Walter J, Hammes WP, Hertel C. Increased complexity of the species composition of lactic acid bacteria in human feces revealed by alternative incubation condition. Microb Ecol. 2003;45(4):455–63.

    Google Scholar 

  • Danielsen M. Characterization of the tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 reveals a composite structure. Plasmid 2002;48(2):98–103.

    Google Scholar 

  • Davidson BE, Kordias N, Dobos M, Hillier AJ. Genomic organization of lactic acid bacteria. Antonie Van Leeuwenhoek. 1996;70(2–4):161–83.

    Google Scholar 

  • de Leeuw E, Li X, Lu W. Binding characteristics of the Lactobacillus brevis ATCC 8287 surface layer to extracellular matrix proteins. FEMS Microbiol Lett. 2006;260(2):210–15.

    Google Scholar 

  • de Vos WM, Underwood HM, Davies FL. Plasmid encoded bacteriophage resistance in Streptococcus cremoris SK11. FEMS Microbiol Lett. 1984;23(2–3):175–8.

    Google Scholar 

  • Delorme C, Bartholini C, Luraschi M, Pons N, Loux V, Almeida M et al. Complete genome sequence of the pigmented Streptococcus thermophilus strain JIM8232. J Bacteriol. 2011;193(19):5581–2.

    Google Scholar 

  • Desiere F, Lucchini S, Canchaya C, Ventura M, Brussow H. Comparative genomics of phages and prophages in lactic acid bacteria. Antonie Van Leeuwenhoek. 2002;82(1–4):73–91.

    Google Scholar 

  • Diep DB, Godager L, Brede D, Nes IF. Data mining and characterization of a novel pediocin-like bacteriocin system from the genome of Pediococcus pentosaceus ATCC 25745. Microbiology 2006;152(Pt 6):1649–59.

    Google Scholar 

  • Dobson AE, Sanozky-Dawes RB, Klaenhammer TR. Identification of an operon and inducing peptide involved in the production of lactacin B by Lactobacillus acidophilus . J Appl Microbiol. 2007;103(5):1766–78.

    Google Scholar 

  • Dougherty BA, Hill C, Weidman JF, Richardson DR, Venter JC, Ross RP. Sequence and analysis of the 60 kb conjugative, bacteriocin-producing plasmid pMRC01 from Lactococcus lactis DPC3147. Mol Microbiol. 1998;29(4):1029–38.

    Google Scholar 

  • Falagas ME, Rafailidis PI, Makris GC. Bacterial interference for the prevention and treatment of infections. Int J Antimicrob Agents. 2008;31(6):518–22.

    Google Scholar 

  • Fang F, Flynn S, Li Y, Claesson MJ, van Pijkeren JP, Collins JK et al. Characterization of endogenous plasmids from Lactobacillus salivarius UCC118. Appl Environ Microbiol. 2008;74(10):3216–28.

    Google Scholar 

  • Favier M, Bilhere E, Lonvaud-Funel A, Moine V, Lucas PM. Identification of pOENI-1 and related plasmids in Oenococcus oeni strains performing the malolactic fermentation in wine. PLoS One. 2012;7(11):e49082.

    Google Scholar 

  • Felis GE, Dellaglio F. Taxonomy of Lactobacilli and Bifidobacteria. Curr Issues Intest Microbiol. 2007;8(2):44–61.

    Google Scholar 

  • Flynn S, van Sinderen D, Thornton GM, Holo H, Nes IF, Collins JK. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology. 2002;148(Pt 4):973–84.

    Google Scholar 

  • Foligne B, Nutten S, Grangette C, Dennin V, Goudercourt D, Poiret S, et al. Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World J Gastroenterol. 2007;13(2):236–43.

    Google Scholar 

  • Forde BM, Neville BA, O’Donnell MM, Riboulet-Bisson E, Claesson MJ, Coghlan A et al. Genome sequences and comparative genomics of two Lactobacillus ruminis strains from the bovine and human intestinal tracts. Microb Cell Fact. 2011;10(Suppl 1):S13.

    Google Scholar 

  • Forde B, Neville B, Donnell M, Riboulet-Bisson E, Claesson M, Coghlan A, et al. Genome sequences and comparative genomics of two Lactobacillus ruminis strains from the bovine and human intestinal tracts. Microb Cell Fact. 2011;10(suppl):S13.

    Google Scholar 

  • Fukao M, Oshima K, Morita H, Toh H, Suda W, Kim SW et al. Genomic analysis by deep sequencing of the probiotic Lactobacillus brevis KB290 harboring nine plasmids reveals genomic stability. PLoS One. 2013;8(3):e60521.

    Google Scholar 

  • Gao Y, Lu Y, Teng KL, Chen ML, Zheng HJ, Zhu YQ et al. Complete genome sequence of Lactococcus lactis subsp. lactis CV56, a probiotic strain isolated from the vaginas of healthy women. J Bacteriol. 2011;193(11):2886–7.

    Google Scholar 

  • German B, Schiffrin EJ, Reniero R, Mollet B, Pfeifer A, Neeser JR. The development of functional foods: lessons from the gut. Trends Biotechnol. 1999;17(12):492–9.

    Google Scholar 

  • Gfeller KY, Roth M, Meile L, Teuber M. Sequence and genetic organization of the 19.3-kb erythromycin- and dalfopristin-resistance plasmid pLME300 from Lactobacillus fermentum ROT1. Plasmid. 2003;50(3):190–201.

    Google Scholar 

  • Gilliland SE. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol Rev. 1990;7(1–2):175–88.

    Google Scholar 

  • Goh YJ, Klaenhammer TR. Genomic features of Lactobacillus species. Front Biosci (Landmark Ed). 2009;14:1362–86.

    Google Scholar 

  • Goh YJ, Zhang C, Benson AK, Schlegel V, Lee JH, Hutkins RW. Identification of a putative operon involved in fructooligosaccharide utilization by Lactobacillus paracasei . Appl Environ Microbiol. 2006;72(12):7518–30.

    Google Scholar 

  • Gorbach SL. Lactic acid bacteria and human health. Ann Med. 1990;22(1):37–41.

    Google Scholar 

  • Granato D, Bergonzelli GE, Pridmore RD, Marvin L, Rouvet M, Corthesy-Theulaz IE. Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect Immun. 2004;72(4):2160–9.

    Google Scholar 

  • Guinane CM, Kent RM, Norberg S, Hill C, Fitzgerald GF, Stanton C, et al. Host specific diversity in Lactobacillus johnsonii as evidenced by a major chromosomal inversion and phage resistance mechanisms. PLoS ONE. 2011;6(4):e18740.

    Google Scholar 

  • Hao P, Zheng H, Yu Y, Ding G, Gu W, Chen S, et al. Complete sequencing and pan-genomic analysis of Lactobacillus delbrueckii subsp. bulgaricus reveal its genetic basis for industrial yogurt production. PLoS ONE. 2011;6(1):e15964.

    Google Scholar 

  • Hassan AN. ADSA foundation scholar award: possibilities and challenges of exopolysaccharide-producing lactic cultures in dairy foods. J Dairy Sci. 2008;91(4):1282–98.

    Google Scholar 

  • Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci USA. 1999;96(5):2192–7.

    Google Scholar 

  • Hochwind K, Weinmaier T, Schmid M, van Hemert S, Hartmann A, Rattei T et al. Draft genome sequence of Lactobacillus casei W56. J Bacteriol. 2012;194(23):6638.

    Google Scholar 

  • Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N et al. New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev. 2005;29(3):435–63.

    Google Scholar 

  • Hosono A, Lee J, Ametani A, Natsume M, Hirayama M, Adachi T, et al. Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101-4. Biosci Biotechnol Biochem. 1997;61(2):312–6.

    Google Scholar 

  • Hugenholtz J, Kleerebezem M. Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations. Curr Opin Biotechnol. 1999;10(5):492–7.

    Google Scholar 

  • Hugenholtz J, Sybesma W, Groot MN, Wisselink W, Ladero V, Burgess K, et al. Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie Van Leeuwenhoek. 2002;82(1–4):217–35.

    Google Scholar 

  • Ito Y, Kawai Y, Arakawa K, Honme Y, Sasaki T, Saito T. Conjugative plasmid from Lactobacillus gasseri LA39 that carries genes for production of and immunity to the circular bacteriocin gassericin A. Appl Environ Microbiol. 2009;75(19):6340–51.

    Google Scholar 

  • Jamal Z, Miot-Sertier C, Thibau F, Dutilh L, Lonvaud-Funel A, Ballestra P et al. Distribution and functions of phosphotransferase system genes in the genome of the lactic acid bacterium Oenococcus oeni . Appl Environ Microbiol. 2013;79(11):3371–9.

    Google Scholar 

  • Jimenez E, Langa S, Martin V, Arroyo R, Martin R, Fernandez L et al. Complete genome sequence of Lactobacillus fermentum CECT 5716, a probiotic strain isolated from human milk. J Bacteriol. 2010;192(18):4800.

    Google Scholar 

  • Johansson P, Paulin L, Sade E, Salovuori N, Alatalo ER, Bjorkroth KJ et al. Genome sequence of a food spoilage lactic acid bacterium, Leuconostoc gasicomitatum LMG 18811T, in association with specific spoilage reactions. Appl Environ Microbiol. 2011;77(13):4344–51.

    Google Scholar 

  • Johnson-Henry KC, Hagen KE, Gordonpour M, Tompkins TA, Sherman PM. Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:H7 adhesion to epithelial cells. Cell Microbiol. 2007;9(2):356–67.

    Google Scholar 

  • Jolly L, Stingele F. Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. Int Dairy J. 2001;11(9):733–45.

    Google Scholar 

  • Jung JY, Lee SH, Jeon CO. Complete genome sequence of Leuconostoc carnosum strain JB16, isolated from kimchi. J Bacteriol. 2012a;194(23):6672–73.

    Google Scholar 

  • Jung JY, Lee SH, Jeon CO. Complete genome sequence of Leuconostoc gelidum strain JB7, isolated from kimchi. J Bacteriol. 2012b;194(23):6665.

    Google Scholar 

  • Jung JY, Lee SH, Jeon CO. Complete genome sequence of Leuconostoc mesenteroides subsp. mesenteroides strain J18, isolated from kimchi. J Bacteriol. 2012c;194(3):730–1.

    Google Scholar 

  • Kaleta P, O’Callaghan J, Fitzgerald GF, Beresford TP, Ross RP. Crucial role for insertion sequence elements in Lactobacillus helveticus evolution as revealed by interstrain genomic comparison. Appl Environ Microbiol. 2009;76(1):212–20.

    Google Scholar 

  • Kandler O. Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek. 1983;49(3):209–24.

    Google Scholar 

  • Kang X, Ling N, Sun G, Zhou Q, Zhang L, Sheng Q. Complete genome sequence of Streptococcus thermophilus strain MN-ZLW-002. J Bacteriol. 2012;194(16):4428–29.

    Google Scholar 

  • Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P et al. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proc Natl Acad Sci USA. 2009;106(40):17193–8.

    Google Scholar 

  • Kato H, Shiwa Y, Oshima K, Machii M, Araya-Kojima T, Zendo T et al. Complete genome sequence of Lactococcus lactis IO-1, a lactic acid bacterium that utilizes xylose and produces high levels of L-lactic acid. J Bacteriol. 2012;194(8):2102–3.

    Google Scholar 

  • Kergourlay G, Messaoudi S, Dousset X, Prevost H. Genome sequence of Lactobacillus salivarius SMXD51, a potential probiotic strain isolated from chicken cecum, showing anti-campylobacter activity. J Bacteriol. 2012;194(11):3008–9.

    Google Scholar 

  • Kim JF, Jeong H, Lee JS, Choi SH, Ha M, Hur CG et al. Complete genome sequence of Leuconostoc citreum KM20. J Bacteriol. 2008;190(8):3093–4.

    Google Scholar 

  • Klaenhammer T, Altermann E, Arigoni F, Bolotin A, Breidt F, Broadbent J, et al. Discovering lactic acid bacteria by genomics. Antonie Van Leeuwenhoek. 2002;82(1–4):29–58.

    Google Scholar 

  • Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R et al. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA. 2003;100(4):1990–5.

    Google Scholar 

  • Klein G, Pack A, Bonaparte C, Reuter G. Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol. 1998;41(2):103–25.

    Google Scholar 

  • Kok J. Genetics of the proteolytic system of lactic acid bacteria. FEMS Microbiol Rev. 1990;7(1–2):15–42.

    Google Scholar 

  • Landete JM, Garcia-Haro L, Blasco A, Manzanares P, Berbegal C, Monedero V et al. Requirement of the Lactobacillus casei MaeKR two-component system for L-malic acid utilization via a malic enzyme pathway. Appl Environ Microbiol. 2009;76(1):84–95.

    Google Scholar 

  • Law J, Vos P, Hayes F, Daly C, de Vos WM, Fitzgerald G. Cloning and partial sequencing of the proteinase gene complex from Lactococcus lactis subsp. lactis UC317. J Gen Microbiol. 1992;138(4):709–18.

    Google Scholar 

  • Lee SH, Jung JY, Jeon CO. Complete genome sequence of Weissella koreensis KACC 15510, isolated from kimchi. J Bacteriol. 2011;193(19):5534.

    Google Scholar 

  • Li X, Gu Q, Lou X, Zhang X, Song D, Shen L et al. Complete genome sequence of the probiotic Lactobacillus plantarum strain ZJ316. Genome Announc. 2013;1(2):e00094–13.

    Google Scholar 

  • Li Y, Canchaya C, Fang F, Raftis E, Ryan KA, van Pijkeren JP et al. Distribution of megaplasmids in Lactobacillus salivarius and other lactobacilli. J Bacteriol. 2007;189(17):6128–39.

    Google Scholar 

  • Linares DM, Kok J, Poolman B. Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies. J Bacteriol. 2010;192(21):5806–12.

    Google Scholar 

  • Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ. The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics. 2010;11:36.

    Google Scholar 

  • Lunde M, Blatny JM, Lillehaug D, Aastveit AH, Nes IF. Use of real-time quantitative PCR for the analysis of phiLC3 prophage stability in lactococci. Appl Environ Microbiol. 2003;69(1):41–8.

    Google Scholar 

  • Macklaim JM, Gloor GB, Anukam KC, Cribby S, Reid G. At the crossroads of vaginal health and disease, the genome sequence of Lactobacillus iners AB-1. Proc Natl Acad Sci USA. 2010;108(Suppl 1):4688–95.

    Google Scholar 

  • Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E et al. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA. 2006;103(42):15611–6.

    Google Scholar 

  • Makarova KS, Koonin EV. Evolutionary genomics of lactic acid bacteria. J Bacteriol. 2007;189(4):1199–208.

    Google Scholar 

  • Martinez-Cuesta Mdel C, Pelaez C, Requena T. Methionine metabolism: major pathways and enzymes involved and strategies for control and diversification of volatile sulfur compounds in cheese. Crit Rev Food Sci Nutr. 2013;53(4):366–85.

    Google Scholar 

  • Mayo B. The proteolytic system of lactic acid bacteria. Microbiologia. 1993;9(2):90–106.

    Google Scholar 

  • Maze A, Boel G, Zuniga M, Bourand A, Loux V, Yebra MJ et al. Complete genome sequence of the probiotic Lactobacillus casei strain BL23. J Bacteriol. 2010;192(10):2647–8.

    Google Scholar 

  • Mills DA, Rawsthorne H, Parker C, Tamir D, Makarova K. Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol Rev. 2005;29(3):465–75.

    Google Scholar 

  • Miyoshi Y, Okada S, Uchimura T, Satoh E. A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells. Biosci Biotechnol Biochem. 2006;70(7):1622–8.

    Google Scholar 

  • Moon YJ, Soh JR, Yu JJ, Sohn HS, Cha YS, Oh SH. Intracellular lipid accumulation inhibitory effect of Weissella koreensis OK1-6 isolated from Kimchi on differentiating adipocyte. J Appl Microbiol. 2012;113(3):652–8.

    Google Scholar 

  • Morel-Deville F, Fauvel F, Morel P. Two-component signal-transducing systems involved in stress responses and vancomycin susceptibility in Lactobacillus sakei . Microbiology. 1998;144(Pt 10):2873–83.

    Google Scholar 

  • Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T et al. Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res. 2008;15(3):151–61.

    Google Scholar 

  • Morita H, Toh H, Oshima K, Murakami M, Taylor TD, Igimi S et al. Complete genome sequence of the probiotic Lactobacillus rhamnosus ATCC 53103. J Bacteriol. 2009;191(24):7630–1.

    Google Scholar 

  • Munoz-Provencio D, Perez-Martinez G, Monedero V. Characterization of a fibronectin-binding protein from Lactobacillus casei BL23. J Appl Microbiol. 2009;108(3):1050–9.

    Google Scholar 

  • Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev. 1999;63(1):174–229.

    Google Scholar 

  • Nelson KE. The future of microbial genomics. Environ Microbiol. 2003;5(12):1223–5.

    Google Scholar 

  • Nes IF, Diep DB, Havarstein LS, Brurberg MB, Eijsink V, Holo H. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek. 1996;70(2–4):113–28.

    Google Scholar 

  • Nyquist OL, McLeod A, Brede DA, Snipen L, Aakra A, Nes IF. Comparative genomics of Lactobacillus sakei with emphasis on strains from meat. Mol Genet Genomics. 2011;285(4):297–311.

    Google Scholar 

  • O’Connell-Motherway M, van Sinderen D, Morel-Deville F, Fitzgerald GF, Ehrlich SD, Morel P. Six putative two-component regulatory systems isolated from Lactococcus lactis subsp. cremoris MG1363. Microbiology. 2000;146(Pt 4):935–47.

    Google Scholar 

  • Oh HM, Cho YJ, Kim BK, Roe JH, Kang SO, Nahm BH et al. Complete genome sequence analysis of Leuconostoc kimchii IMSNU 11154. J Bacteriol. 2010;192(14):3844–5.

    Google Scholar 

  • Oh S, Roh H, Ko HJ, Kim S, Kim KH, Lee SE et al. Complete genome sequencing of Lactobacillus acidophilus 30SC, isolated from swine intestine. J Bacteriol. 2011;193(11):2882–3.

    Google Scholar 

  • Pal K, Szen O, Kiss A, Naar Z. Comparison and evaluation of molecular methods used for identification and discrimination of lactic acid bacteria. J Sci Food Agric. 2012;92(9):1931–6.

    Google Scholar 

  • Pastink MI, Teusink B, Hols P, Visser S, de Vos WM, Hugenholtz J. Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria. Appl Environ Microbiol. 2009;75(11):3627–33.

    Google Scholar 

  • Peant B, LaPointe G, Gilbert C, Atlan D, Ward P, Roy D. Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus . Microbiology 2005;151(Pt 6):1839–51.

    Google Scholar 

  • Pfeiler EA, Azcarate-Peril MA, Klaenhammer TR. Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus . J Bacteriol. 2007;189(13):4624–34.

    Google Scholar 

  • Pittet V, Ewen E, Bushell BR, Ziola B. Genome sequence of Lactobacillus rhamnosus ATCC 8530. J Bacteriol. 2012;194(3):726.

    Google Scholar 

  • Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev. 1993;57(3):543–94.

    Google Scholar 

  • Pretzer G, Snel J, Molenaar D, Wiersma A, Bron PA, Lambert J et al. Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum . J Bacteriol. 2005;187(17):6128–36.

    Google Scholar 

  • Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC et al. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci USA. 2004;101(8):2512–7.

    Google Scholar 

  • Rasmussen TB, Danielsen M, Valina O, Garrigues C, Johansen E, Pedersen MB. Streptococcus thermophilus core genome: comparative genome hybridization study of 47 strains. Appl Environ Microbiol. 2008;74(15):4703–10.

    Google Scholar 

  • Reuter G. Elective and selective media for lactic acid bacteria. Int J Food Microbiol. 1985;2(1–2):55–68.

    Google Scholar 

  • Revilla-Guarinos A, Gebhard S, Alcantara C, Staron A, Mascher T, Zuniga M. Characterization of a regulatory network of peptide antibiotic detoxification modules in Lactobacillus casei BL23. Appl Environ Microbiol. 2013;79(10):3160–70.

    Google Scholar 

  • Roos S, Jonsson H. A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology. 2002;148(Pt 2):433–42.

    Google Scholar 

  • Rosander A, Connolly E, Roos S. Removal of antibiotic resistance gene-carrying plasmids from Lactobacillus reuteri ATCC 55730 and characterization of the resulting daughter strain, L. reuteri DSM 17938. Appl Environ Microbiol. 2008;74(19):6032–40.

    Google Scholar 

  • Rossetti L, Giraffa G. Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases. J Microbiol Methods. 2005;63(2):135–144.

    Google Scholar 

  • Ryan MP, Rea MC, Hill C, Ross RP. An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl Environ Microbiol. 1996;62(2):612–9.

    Google Scholar 

  • Salvetti E, Torriani S, Felis GE. The genus Lactobacillus : a taxonomic update. Probiotics Antimicro Prot. 2012;4:217–26.

    Google Scholar 

  • Saulnier DM, Molenaar D, de Vos WM, Gibson GR, Kolida S. Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays. Appl Environ Microbiol. 2007;73(6):1753–65.

    Google Scholar 

  • Schroeter J, Klaenhammer T. Genomics of lactic acid bacteria. FEMS Microbiol Lett. 2009;292(1):1–6.

    Google Scholar 

  • Shiby VK, Mishra HN. Fermented milks and milk products as functional foods—a review. Crit Rev Food Sci Nutr. 2013;53(5):482–96.

    Google Scholar 

  • Siezen RJ, Bayjanov J, Renckens B, Wels M, van Hijum SA, Molenaar D et al. Complete genome sequence of Lactococcus lactis subsp. lactis KF147, a plant-associated lactic acid bacterium. J Bacteriol. 2010;192(10):2649–50.

    Google Scholar 

  • Siezen RJ, Renckens B, van Swam I, Peters S, van Kranenburg R, Kleerebezem M et al. Complete sequences of four plasmids of Lactococcus lactis subsp. cremoris SK11 reveal extensive adaptation to the dairy environment. Appl Environ Microbiol. 2005;71(12):8371–82.

    Google Scholar 

  • Siezen RJ, van Enckevort FH, Kleerebezem M, Teusink B. Genome data mining of lactic acid bacteria: the impact of bioinformatics. Curr Opin Biotechnol. 2004;15(2):105–15.

    Google Scholar 

  • Siezen RJ, Bayjanov JR, Felis GE, van der Sijde MR, Starrenburg M, Molenaar D, et al. Genome-scale diversity and niche adaptation analysis of Lactococcus lactis by comparative genome hybridization using multi-strain arrays. Microb Biotechnol. 2011;4(3):383–402.

    Google Scholar 

  • Stahl B, Barrangou R. Complete genome sequence of probiotic strain Lactobacillus acidophilus La-14. Genome Announc 2013;1(3):e00376–13.

    Google Scholar 

  • Stiles ME. Biopreservation by lactic acid bacteria. Antonie Van Leeuwenhoek. 1996;70(2–4):331–45.

    Google Scholar 

  • Stiles ME, Holzapfel WH. Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol. 1997;36:1–29.

    Google Scholar 

  • Sturme MH, Nakayama J, Molenaar D, Murakami Y, Kunugi R, Fujii T et al. An agr-like two-component regulatory system in Lactobacillus plantarum is involved in production of a novel cyclic peptide and regulation of adherence. J Bacteriol. 2005;187(15):5224–35.

    Google Scholar 

  • Sun Z, Chen X, Wang J, Zhao W, Shao Y, Guo Z et al. Complete genome sequence of Lactobacillus delbrueckii subsp. bulgaricus strain ND02. J Bacteriol. 2011;193(13):3426–7.

    Google Scholar 

  • Sun Z, Chen X, Wang J, Zhao W, Shao Y, Wu L et al. Complete genome sequence of Streptococcus thermophilus strain ND03. J Bacteriol. 2010;193(3):793–4.

    Google Scholar 

  • Suyama M, Bork P. Evolution of prokaryotic gene order: genome rearrangements in closely related species. Trends Genet. 2001;17(1):10–13.

    Google Scholar 

  • Tafti AG, Peighambardoust SH, Hesari J, Bahrami A, Bonab ES. Physico-chemical and functional properties of spray-dried sourdough in breadmaking. Food Sci Technol Int. 2013;19(3):271–8.

    Google Scholar 

  • Taverniti V, Guglielmetti S. Health-promoting properties of Lactobacillus helveticus . Front Microbiol. 2012;3:392.

    Google Scholar 

  • Thompson JK, Foley S, McConville KJ, Nicholson C, Collins MA, Pridmore RD. Complete sequence of plasmid pLH1 from Lactobacillus helveticus ATCC15009: analysis reveals the presence of regions homologous to other native plasmids from the host strain. Plasmid. 1999;42(3):221–35.

    Google Scholar 

  • Tillier ER, Collins RA. Genome rearrangement by replication-directed translocation. Nat Genet. 2000;26(2):195–7.

    Google Scholar 

  • Tompkins TA, Barreau G, Broadbent JR. Complete genome sequence of Lactobacillus helveticus R0052, a commercial probiotic strain. J Bacteriol. 2012;194(22):6349.

    Google Scholar 

  • Vadeboncoeur C, Moineau S. The relevance of genetic analysis to dairy bacteria: building upon our heritage. Mirob Cell Fact. 2004;3:15.

    Google Scholar 

  • van Kranenburg R, Kleerebezem M, de Vos WM. Nucleotide sequence analysis of the lactococcal EPS plasmid pNZ4000. Plasmid. 2000;43(2):130–6.

    Google Scholar 

  • van Pijkeren JP, Canchaya C, Ryan KA, Li Y, Claesson MJ, Sheil B et al. Comparative and functional analysis of sortase-dependent proteins in the predicted secretome of Lactobacillus salivarius UCC118. Appl Environ Microbiol. 2006;72(6):4143–53.

    Google Scholar 

  • Vastano V, Salzillo M, Siciliano RA, Muscariello L, Sacco M, Marasco R. The E1 beta-subunit of pyruvate dehydrogenase is surface-expressed in Lactobacillus plantarum and binds fibronectin. Microbiol Res. 2014;169(3):121–7.

    Google Scholar 

  • Ventura M, Canchaya C, Bernini V, Altermann E, Barrangou R, McGrath S et al. Comparative genomics and transcriptional analysis of prophages identified in the genomes of Lactobacillus gasseri , Lactobacillus salivarius , and Lactobacillus casei . Appl Environ Microbiol. 2006;72(5):3130–46.

    Google Scholar 

  • Vogel RF, Pavlovic M, Ehrmann MA, Wiezer A, Liesegang H, Offschanka S et al. Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs. Microb Cell Fact. 2011;10(Suppl 1):S6.

    Google Scholar 

  • von Ossowski I, Satokari R, Reunanen J, Lebeer S, De Keersmaecker SC, Vanderleyden J et al. Functional characterization of a mucus-specific LPXTG surface adhesin from probiotic Lactobacillus rhamnosus GG. Appl Environ Microbiol. 2011;77(13):4465–72.

    Google Scholar 

  • Wada T, Noda M, Kashiwabara F, Jeon HJ, Shirakawa A, Yabu H et al. Characterization of four plasmids harboured in a Lactobacillus brevis strain encoding a novel bacteriocin, brevicin 925A, and construction of a shuttle vector for lactic acid bacteria and Escherichia coli . Microbiology 2009;155(Pt 5):1726–37.

    Google Scholar 

  • Wang Y, Chen C, Ai L, Zhou F, Zhou Z, Wang L et al. Complete genome sequence of the probiotic Lactobacillus plantarum ST-III. J Bacteriol. 2010;193(1):313–4.

    Google Scholar 

  • Wegmann U, O’Connell-Motherway M, Zomer A, Buist G, Shearman C, Canchaya C et al. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol. 2007;189(8):3256–70. doi:JB.01768-06.

    Google Scholar 

  • Wegmann U, Overweg K, Horn N, Goesmann A, Narbad A, Gasson MJ et al. Complete genome sequence of Lactobacillus johnsonii FI9785, a competitive exclusion agent against pathogens in poultry. J Bacteriol. 2009;191(22):7142–3.

    Google Scholar 

  • Welman AD, Maddox IS. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol. 2003;21(6):269–74.

    Google Scholar 

  • Ya T, Zhang Q, Chu F, Merritt J, Bilige M, Sun T, et al. Immunological evaluation of Lactobacillus casei Zhang: a newly isolated strain from koumiss in Inner Mongolia. China BMC Immunol. 2008;9:68.

    Google Scholar 

  • Yebra MJ, Zuniga M, Beaufils S, Perez-Martinez G, Deutscher J, Monedero V. Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol. Appl Environ Microbiol. 2007;73(12):3850–8.

    Google Scholar 

  • Zhang W, Sun Z, Wu R, Menghe, Zhang H. Comparative genome analysis of probiotic Lactobacillus casei Zhang. In: Genomics II: bacteria, viruses and metabolic pathways. 1st ed. Hongkong: iConcept Press Ltd; 2013. p. 276–96.

    Google Scholar 

  • Zhang W, Yu D, Sun Z, Chen X, Bao Q, Meng H et al. Complete nucleotide sequence of plasmid plca36 isolated from Lactobacillus casei Zhang. Plasmid. 2008;60(2):131–5.

    Google Scholar 

  • Zhang W, Yu D, Sun Z, Wu R, Chen X, Chen W et al. Complete genome sequence of Lactobacillus casei Zhang, a new probiotic strain isolated from traditional homemade koumiss in Inner Mongolia, China. J Bacteriol. 2010;192(19):5268–9.

    Google Scholar 

  • Zhang ZY, Liu C, Zhu YZ, Wei YX, Tian F, Zhao GP et al. Safety assessment of Lactobacillus plantarum JDM1 based on the complete genome. Int J Food Microbiol. 2011;153(1–2):166–70.

    Google Scholar 

  • Zhang W, Yu D, Sun Z, Chen W, Hu S, Meng H, et al. The comparative analysis of a prophage remnant Lcazh1 in relation to other Lactobacillus prophages, particularly Lp3. Int J Dairy Technol. 2010;63(3):413–7.

    Google Scholar 

  • Zhang Y, Wang L, Zhang J, Li Y, He Q, Li H, et al. Probiotic Lactobacillus casei Zhang ameliorates high-fructose-induced impaired glucose tolerance in hyperinsulinemia rats. Eur J Nutr. 2014;53(1):221–32.

    Google Scholar 

  • Zhao W, Chen Y, Sun Z, Wang J, Zhou Z, Sun T et al. Complete genome sequence of Lactobacillus helveticus H10. J Bacteriol. 2011;193(10):2666–7.

    Google Scholar 

  • Zhu Y, Zhang Y, Li Y. Understanding the industrial application potential of lactic acid bacteria through genomics. Appl Microbiol Biotechnol. 2009;83(4):597–610.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, W., Zhang, H. (2014). Genomics of Lactic Acid Bacteria. In: Zhang, H., Cai, Y. (eds) Lactic Acid Bacteria. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8841-0_3

Download citation