Performance Evaluation of the Valveless Micropump with Piezoelectric Actuator

Conference paper

Abstract

To meet the rising need in biological and medical applications, the innovative micro-electro-mechanical systems (MEMS) technologies have realized an important progress of the micropump as one of the essential fluid handling devices to deliver and control precise amounts of fluids flowing along a specific direction. This paper aims to present the design, fabrication and test of a novel piezoelectrically actuated valveless micropump. The micropump consists of a piezoelectric actuator, a vibration plate, a stainless steel chamber plate with membrane and integrated diffuser/nozzle bulge-piece design, an acrylic plate as the top cover to form the channel with the channel plate and two glass tubes for delivery liquid. The chamber and the vibration plate were made of the stainless steel manufactured using the lithography and etching process based on MEMS fabrication technology. The experimental results demonstrate that the flow rate of micropump accurately controlled by regulating the operating frequency and voltage. The flow rate of 1.59 ml/min and back pressure of 8.82 kPa are obtained when the micropump is driven with alternating sine-wave voltage of 240 Vpp at 400 Hz. The micropump proposed in this study provides a valuable contribution to the ongoing development of microfluidic systems.

Keywords

Actuator Diffuser Micropump Nozzle Piezoelectric Valveless 

Notes

Acknowledgment

This paper represents part of the results obtained under the support of the National Science Council, Taiwan, ROC (Contract No. NSC101-2221-E-212-002-).

References

  1. 1.
    C. Yamahata, C. Vandevyver, F. Lacharme, P. Izewska, H. Vogel, R. Freitag, M.A.M. Gijs, Pumping of mammalian cells with a nozzle-diffuser micropump. Lab Chip 5, 1083–1088 (2005)CrossRefGoogle Scholar
  2. 2.
    S.S. Wang, X.Y. Huang, C. Yang, Valveless micropump with acoustically featured pumping chamber. Microfluid. Nanofluid. 8, 549–555 (2010)CrossRefGoogle Scholar
  3. 3.
    H.K. Ma, H.C. Su, J.Y. Wu, Study of an innovative one-sided actuating piezoelectric valveless micropump with a secondary chamber. Sens. Actuators, A 171, 297–305 (2011)CrossRefGoogle Scholar
  4. 4.
    L.S. Jang, W.H. Kan, Peristaltic piezoelectric micropump system for biomedical applications. Biomed. Microdevices 9, 619–626 (2007)CrossRefGoogle Scholar
  5. 5.
    C.Y. Lee, H.T. Chang, C.Y. Wen, A MEMS-based valveless impedance pump utilizing electromagnetic actuation. J. Micromech. Microeng. 18, 035044 (2008)CrossRefGoogle Scholar
  6. 6.
    Y.J. Yang, H.H. Liao, Development and characterization of thermopneumatic peristaltic micropumps. J. Micromech. Microeng. 19, 025003 (2009)CrossRefGoogle Scholar
  7. 7.
    N.T. Nguyen, X.Y. Huang, T.K. Chuan, MEMS-micropumps. J. Fluids. Eng. Trans. ASME 124, 384–392 (2002)CrossRefGoogle Scholar
  8. 8.
    D.J. Laser, J.G. Santiago, A review of micropumps. J. Micromech. Microeng. 14, R35–R64 (2004)CrossRefGoogle Scholar
  9. 9.
    B.D. Iverson, S.V. Garimella, Recent advances in microscale pumping technologies: a review and evaluation. Microfluid. Nanofluid. 5, 145–174 (2008)CrossRefGoogle Scholar
  10. 10.
    M. Nabavi, Steady and unsteady flow analysis in microdiffusers. Microfluid. Nanofluid. 7, 599–619 (2009)CrossRefGoogle Scholar
  11. 11.
    G. Fuhr, T. Schnelle, B. Wagner, Travelling wave-driven microfabricated electro-hydrodynamic pumps for liquids. J. Micromech. Microeng. 4, 217–226 (1994)CrossRefGoogle Scholar
  12. 12.
    J.C.T. Eijkel, C. Dalton, C.J. Hayden, J.P.H. Burt, A. Manz, A circular AC magnetohydrodynamic micropump for chromatographic applications. Sens. Actuators, A 92, 215–221 (2003)CrossRefGoogle Scholar
  13. 13.
    L. Chen, H. Wang, J. Ma, C. Wang, Y. Guan, Fabrication and characterization of a multi-stage electroosmotic pump for liquid delivery. Sens. Actuators, B 104, 117–123 (2005)CrossRefGoogle Scholar
  14. 14.
    J. Xie, Y.N. Miao, J. Shih, Q. He, J. Liu, Y.C. Tai, T.D. Lee, An electrochemical pumping system for on-chip gradient generation. Anal. Chem. 76, 3756–3763 (2004)CrossRefGoogle Scholar
  15. 15.
    M.M. Teymoori, E. Abbaspour-Sani, Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sens. Actuators, A 117, 222–229 (2005)CrossRefGoogle Scholar
  16. 16.
    G.H. Feng, F.S. Kim, Micropump based on PZT unimorph and one-way parylene valves. J. Micromech. Microeng. 14, 429–435 (2004)CrossRefGoogle Scholar
  17. 17.
    P. Dario, N. Croce, M.C. Carrozza, G. Varallo, A fluid handling system for a chemical microanalyzer. J. Micromech. Microeng. 6, 95–98 (1996)CrossRefGoogle Scholar
  18. 18.
    W.K. Schomburg, J. Vollmer, B. Bustgens, J. Fahrenberg, H. Hein, W. Menz, Microfluidic components in LIGA technique. J. Micromech. Microeng. 4, 186–191 (1994)CrossRefGoogle Scholar
  19. 19.
    Y. Yang, Z. Zhou, X. Ye, X. Jiang, in Bimetallic Thermally Actuated Micropump, vol. 59. American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC, (1996), pp. 351–354Google Scholar
  20. 20.
    E. Makino, T. Mitsuya, T. Shibata, Fabrication of TiNi shape memory micropump. Sens. Actuators, A 88, 256–262 (2001)CrossRefGoogle Scholar
  21. 21.
    W.Y. Sim, H.J. Yoon, O.C. Jeong, S.S. Yang, A phase change type of micropump with aluminum flap valves. J. Micromech. Microeng. 13, 286–294 (2003)CrossRefGoogle Scholar
  22. 22.
    E. Stemme, G. Stemme, A valve-less diffuser/nozzle based fluid pump. Sens. Actuators, A 39, 159–167 (1993)CrossRefGoogle Scholar
  23. 23.
    C.H. Cheng, C.K. Chen, in WCE 2013: Characteristic Studies of the Piezoelectrically Actuated Valveless Micropump. Proceedings of the World Congress on Engineering 2013. Lecture Notes in Engineering and Computer Science (London, 3–5 July 2013), pp. 1785–1790Google Scholar
  24. 24.
    B. Fan, G. Song, F. Hussain, Simulation of a piezoelectrically actuated valveless micropump. Smart Mater. Struct. 14, 400–405 (2005)CrossRefGoogle Scholar
  25. 25.
    L.S. Jang, Y.C. Yu, Peristaltic micropump system with piezoelectric actuators. Microsyst. Technol. 14, 241–248 (2008)CrossRefGoogle Scholar
  26. 26.
    J. gawa, I. Kanno, H. Kotera, T. Suzuki, Development of liquid pumping devices using vibrating microchannel walls. Sens. Actuators, A 152, 211–218 (2009)CrossRefGoogle Scholar
  27. 27.
    F.K. Forster, R.L. Bardell, M.A. Afromowitz, N.R. Sharma, A. Blanchard, Design, fabrication and testing of a fixed-valve micropump. IMECE FED 234, 39–44 (1995)Google Scholar
  28. 28.
    C. Morris, F. Forster, Low-order modeling of resonance for fixed-valve micropumps based on first principles. J. Microelectromech. Syst. 12, 325–334 (2003)CrossRefGoogle Scholar
  29. 29.
    Y.Y. Tsui, S.L. Lu, Evaluation of the performance of a valveless micropump by CFD and lumped-system analyses. Sens. Actuators, A 148, 138–148 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Mechanical and Automation EngineeringDa-Yeh UniversityDacunTaiwan

Personalised recommendations