Optimum Parameters for Machining Metal Matrix Composite

  • Brian Boswell
  • Mohammad Nazrul Islam
  • Alokesh Pramanik
Conference paper


The need for optimum machining parameters has always been of paramount importance for metal cutting. The economics of the process largely depends on selecting the best machining parameters. However, the additional challenge of being environmentally friendly in production while still being cost effective is now imperative. Machining conditions are not always conducive in reducing the carbon footprint when cutting material with a low machinability rating. This is particularly pertinent when aerospace material such as Boron Carbide Particle Reinforced Aluminium Alloy (AMC220bc) is machined. This material falls under the category of a particulate reinforced Metal Matrix Composite (MMC), where the ceramic fibers disrupt the flow of electrons. The result is a decrease in thermal conductivity causing the tool interface temperature to increase, reducing tool life. This research will determine the optimum economic and sustainable machining parameters for this material.


Aerospace material Carbon footprint Machinability Machining parameters Metal matrix composite Taguchi method 


  1. 1.
    S. Kalpakjian, S.R. Schmid, Manufacturing engineering and technology (Prentice Hall, Singapore, 2010)Google Scholar
  2. 2.
    T.J. Drozda, C. Wick, J.T. Benedict, R.F. Veilleux, R. Bakerjian, P.J. Mitchell, Tool and manufacturing engineers handbook : a reference book for manufacturing engineers, managers, and technicians, 4th edn. (SME Publications, Michigan, 1983)Google Scholar
  3. 3.
    T. Gutowski, C. Murphy, D. Allen, D. Bauer, B. Bras, T. Piwonka, P. Sheng, J. Sutherland, D. Thurston, E. Wolff, Environmentally benign manufacturing: Observations from Japan, Europe and United States. J. Cleaner Prod 13(1), 1–17 (2005)CrossRefGoogle Scholar
  4. 4.
    A.N.I. 14040, Environmental Management—Life Cycle Assessment—Principles and Framework (Standards Australia and Standards New Zealand, The Crescent, Homebush, 1998)Google Scholar
  5. 5.
    P.S. Sreejith, B.K.A. Ngoi, Dry machining: Machining of the future. J. Mater Process. Technol. 101(1), 287–291 (2000)Google Scholar
  6. 6.
    R. Roy, A Primer on the Taguchi Method, (Society of Manufacturing Engineers, USA 1990)Google Scholar
  7. 7.
    S. Tanaydin, Robust design and analysis for quality engineering. Technometrics 40(4), 348 (1998)CrossRefGoogle Scholar
  8. 8.
    N.H. Rafai, M.N. Islam, An investigation into dimensional accuracy and surface finish achievable in dry turning. Mach. Sci. Technol. 13(4), 571–589 (2009)CrossRefGoogle Scholar
  9. 9.
    D. Haughey, Pareto Analysis Step by Step [Online]. Available: (2010)
  10. 10.
    B. Boswell, M.N. Islam, A. Pramanik, Sustainable machining of aerospace material. In: Proceedings of the World Congress on Engineering 2013 (WCE 2013), Lecture Notes in Engineering and Computer Science. 3–5 July, 2013, (pp. 1869–1876). London (2013)Google Scholar
  11. 11.
    R. Azouzi, M. Guillot, On-line prediction of surface finish and dimensional deviation in turning using neural network based sensor fusion. Int. J. Mach. Tools Manuf. 37(9), 1201–1217 (1997)CrossRefGoogle Scholar
  12. 12.
    U.A. Dabade, H.A. Sonawane, S.S. Joshi, Cutting forces and surface roughness in machining Al/SiCp composites of varying composition. Mach. Sci. Technol. 14(2), 258–279 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Brian Boswell
    • 1
  • Mohammad Nazrul Islam
    • 1
  • Alokesh Pramanik
    • 1
  1. 1.Department of Mechanical EngineeringCurtin UniversityPerthAustralia

Personalised recommendations