Fuzzy-Logic Based Computation for Parameters Identification of Solar Cell Models

  • Toufik Bendib
  • Fayçal Djeffal
Conference paper


The identification of the electrical parameters of the organic solar cells, such as the series resistance, the shunt resistance, the diode saturation current and the diode ideality factor, is an important task to improve their models behavior and the time simulation for photovoltaic applications. The conventional extraction methods using the optimization and measurement techniques, which are based on calculating derivatives, are quite computationally expensive and difficult to code. Therefore these parameters are required new optimization and modeling methods that capture the effect of each model parameter accurately and efficiently. In the present work, a new, fast and accurate organic solar cell extraction technique using Fuzzy-Logic-based computation is presented. This approach is based on fuzzy control techniques. These techniques allow using knowledge about the model behavior into the parameter extraction method, thus simplifying the task. The procedure is applied to extract the different parameters of a single-diode solar cell model for which results show good performances. The encouraging results have indicated the applicability of the developed approach to be incorporated in solar cell simulator tools for photovoltaic applications.


Accuracy Circuit Extraction Fuzzy logic Identification Inference Solar cell 


  1. 1.
    Y. Chen, X. Wang, D. Li, R. Hong, H. Shen, Parameters extraction from commercial solar cells I–V characteristics and shunt analysis. Appl. Energy 88(6), 2239–2244 (2011)CrossRefGoogle Scholar
  2. 2.
    X. Han, Y. Wang, L. Zhu, Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids. Appl. Energy 88(12), 4481–4489 (2011)CrossRefGoogle Scholar
  3. 3.
    M.A. Green, K. Emery, K. Buecher, D.L. King, S. Igari, Solar cell efficiency tables (Version 9). Prog. Photovoltaics: Res. Appl. 5(1), 51–54 (1997)CrossRefGoogle Scholar
  4. 4.
    H.J. Lewerenz, H. Jungblut, Photovoltaik Grundlagen und Anwendungen (Springer, Berlin, 1995)Google Scholar
  5. 5.
    M. Tivanov, A. Patryn, N. Drozdov, A. Fedotov, A. Mazanik, Determination of solar cell parameters from its current–voltage and spectral characteristics. Sol. Energy Mater. Sol. Cells 87(1–4), 457–465 (2005)CrossRefGoogle Scholar
  6. 6.
    E. Radziemska, Dark I-U–T measurements of single crystalline silicon solar cells. Energy Convers. Manag. 46(9–10), 1485–1494 (2005)CrossRefGoogle Scholar
  7. 7.
    T. Jeranko, H. Tributsch, N.S. Sariciftci, J.C. Hummelen, Patterns of efficiency and degradation of composite polymer solar cells. Sol. Energy Mater. Sol. Cells 83(2–3), 247–262 (2004)CrossRefGoogle Scholar
  8. 8.
    J.A. Jervase, H. Bourdoucen, A. Al-Lawati, Solar cell parameter extraction using genetic algorithms. Meas. Sci. Technol. 12(11), 1922–1925 (2001)CrossRefGoogle Scholar
  9. 9.
    M. Ye, S. Zeng, Y. Xu, An extraction method of solar cell parameters with improved particle swarm optimization. In China Semiconductor Technology International Conference 2010 (CSTIC 2010), 18–19 Mar 2010, Shanghai, ChinaGoogle Scholar
  10. 10.
    A. Askarzadeh, A. Rezazadeh, Artificial bee swarm optimization algorithm for parameters identification of solar cell models. Appl. Energy 102(Special), 943–949 (2013)Google Scholar
  11. 11.
    T. Bendib, A.Maoucha, F. Djeffal, N. Lakhdar, D. Ararand, M.A. Abdi, A multi-objective optimization-based approach to improve the organic solar cell efficiency. In 1st International Conference on Renewable Energies and Vehicular Technology, REVET 2012, Hammamet, Tunisia, 26–28 Mar 2012, pp. 425–429 (2012)Google Scholar
  12. 12.
    F. Djeffal, T. Bendib, D. Arar, Z. Dibi, An optimized metal grid design to improve the solar cell performance under solar concentration using multiobjective computation. Mater. Sci. Eng. B 178(9), 574–579 (2013)CrossRefGoogle Scholar
  13. 13.
    W. Kim, W. Choi, A novel parameter extraction method for the one-diode solar cell model. Sol. Energy 84(6), 1008–1019 (2010)CrossRefGoogle Scholar
  14. 14.
    C.F. Zhang, J.C. Zhang, Y. Hao, Z. Lin, C. Zhu, A simple and efficient solar cell parameter extraction method from a single current–voltage curve. J. Appl. Phys. 110(6), 064504–064510 (2011)CrossRefGoogle Scholar
  15. 15.
    A. Maoucha, F. Djeffal, D. Arar, N. Lakhdar, T. Bendib, M.A. Abdi, An accurate Organic solar cell parameters extraction approach based on the illuminated I–V characteristics for double diode modeling, International Conference on Renewable Energies and Vehicular Technology, IEEE-REVET’ 2012, Hammamet, Tunisia, 26–28 Mar 2012, pp. 74–77 (2012)Google Scholar
  16. 16.
    T. Bendib, F. Djeffal, D. Arar, Z. Dibi,, A. Ferdi, Fuzzy-logic-based approach to study the electrons mobility in nanoscale double gate MOSFETs. IOP Conference Series: Materials Science and Engineering, vol. 41, p. 012016 (2012)Google Scholar
  17. 17.
    ATLAS: 2D Device Simulator, SILVACO International 2008Google Scholar
  18. 18.
    A. Cheknane, H.S. Hilal, F. Djeffal, B. Benyoucef, J.-P. Charles, An equivalent circuit approach to organic solar cell modelling. Microelectron. J. 39(10), 1173–1180 (2008)CrossRefGoogle Scholar
  19. 19.
    L.A. Zadeh, Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    R.R. Yager, L.A. Zadeh, An introduction to fuzzy logic applications in intelligent systems (Kluwer, Norwell, 1991)Google Scholar
  21. 21.
    K. Mishra, I.G. Sarma, K.N. Swamy, Performance evaluation of two fuzzy-logic-based homing guidance schemes. J. Guidance Control Dyn. 17(6), 1389–1391 (1994)CrossRefGoogle Scholar
  22. 22.
    M. Esposito, G.D. Pietro, An ontology-based fuzzy decision support system for multiple sclerosis. Eng. Appl. Artif. Intell. 24(8), 1340–1354 (2011)CrossRefGoogle Scholar
  23. 23.
    T. Bendib, F. Djeffal, D. Arar, M. Meguellati, Fuzzy-logic-based approach for organic solar cell parameters extraction. In Lecture Notes in Engineering and Computer Science: Proceedings of the World Congress on Engineering 2013, WCE 2013, 3–5 July 2013, London, UK, pp 1182–1185 (2013)Google Scholar
  24. 24.
    A. Ortiz-Conde, F.J. Garcia Sanchez, J. Muci, New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics. Sol. Energy Mater. Sol. Cells 90(3), 352–361 (2006)CrossRefGoogle Scholar
  25. 25.
    J. Nocedal, S.J. Wright, Numerical Optimization, 2nd edn. Springer Series in Operations Research (Springer, Berlin, 2006)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.LEA Department of ElectronicsUniversity of BatnaBatnaAlgeria

Personalised recommendations