Modeling and Analysis of Spray Pyrolysis Deposited SnO2 Films for Gas Sensors

  • Lado FilipovicEmail author
  • Siegfried Selberherr
  • Giorgio C. Mutinati
  • Elise Brunet
  • Stephan Steinhauer
  • Anton Köck
  • Jordi Teva
  • Jochen Kraft
  • Jörg Siegert
  • Franz Schrank
  • Christian Gspan
  • Werner Grogger
Conference paper


Metal oxide materials such as tin oxide (SnO2) show powerful gas sensing capabilities. Recently, the deposition of a thin tin oxide film at the backend of a CMOS processing sequence has enabled the manufacture of modern gas sensors. Among several potential deposition methods for SnO2, spray pyrolysis deposition has proven itself to be relatively easy to use and cost effective while providing excellent surface coverage on step structures and etched holes. A model for spray pyrolysis deposition using a pressure atomizer is presented and implemented in a Level Set framework. A simulation of tin oxide deposition is performed on a typical gas sensor geometry and the resulting structure is imported into a finite element tool in order to analyze the electrical characteristics and thermo-mechanical stress present in the grown layer after processing. The deposition is performed at 400 °C and the subsequent cooling to room temperatures causes a stress to develop at the material interfaces due to variations in the coefficient of thermal expansion between the different materials.


Electrical characterization of tin oxide FEM simulation Level set method Modeling spray pyrolysis Monte Carlo Smart gas sensors Spray pyrolysis deposition Thermal stress modeling Tin oxide Von Mises stress 



This work has been partly performed in the COCOA-CATRENE European project and in the project ESiP. In this latter the Austrian partners are funded by the Austrian Research Promotion Agency (FFG) under project no. 824954 and the ENIAC Joint Undertaking.


  1. 1.
    M. Batzill, U. Diebold, The surface and materials science of tin oxide. Prog. Surf. Sci. 79(2), 47–154 (2005)CrossRefGoogle Scholar
  2. 2.
    G. Blandenet, M. Court, Y. Lagarde, Thin layers deposited by the pyrosol process. Thin Solid Films 77(1–3), 81–90 (1981)CrossRefGoogle Scholar
  3. 3.
    J. Boltz, D. Koehl, M. Wuttig, Low temperature sputter deposition of SnOx: Sb films for transparent conducting oxide applications. Surf. Coat. Technol. 205(7), 2455–2460 (2010)CrossRefGoogle Scholar
  4. 4.
    A. Bouaoud, A. Rmili, F. Ouachtari, A. Louardi, T. Chtouki, B. Elidrissi, H. Erguig, Transparent conducting properties of Ni doped zinc oxide thin films prepared by a facile spray pyrolysis technique using perfume atomizer. Mater. Chem. Phys. 137(3), 843–847 (2013)CrossRefGoogle Scholar
  5. 5.
    E. Brunet, T. Maier, G.C. Mutinati, S. Steinhauer, A. Köck, C. Gspan, W. Grogger, Comparison of the gas sensing performance of SnO2 thin film and SnO2 nanowire sensors. Sens. Actuator B 165, 110–118 (2012)CrossRefGoogle Scholar
  6. 6.
    D.M. Carvalho, J.L. Maciel Jr, L.P. Ravaro, R.E. Garcia, V.G. Ferreira, L.V. Scalvi, Numerical simulation of the liquid phase in SnO2 thin film deposition by sol-gel-dip-coating. J. Sol-Gel. Sci. Technol. 55(3), 385–393 (2010)CrossRefGoogle Scholar
  7. 7.
    O. Ertl, Numerical methods for topography simulation. Dissertation, Technischen Universität Wien, Fakultät für Elektrotechnik und Informationstechnik, (2010)
  8. 8.
    O. Ertl, S. Selberherr, A fast level set framework for large three-dimensional topography simulations. Comput. Phys. Commun. 180(8), 1242–1250 (2009)CrossRefGoogle Scholar
  9. 9.
    L. Filipovic, O. Ertl, S. Selberherr, Parallelization strategy for hierarchical run length encoded data structures. In Proceedings of IASTED International Conference on Parallel and Distributed Computing and Networks (PDCN) 2011, 15–17 Feb 2011, Innsbruck, Austria, pp. 131–138 (2011)Google Scholar
  10. 10.
    L. Filipovic, S. Selberherr, G.C. Mutinati, E. Brunet, S. Steinhauer, A. Köck, J. Teva, J. Kraft, J. Siegert, F. Schrank, Modeling spray pyrolysis deposition. In Lecture Notes in Engineering and Computer Science: Proceedings of World Congress on Engineering 2013, 3–5 July 2013, London, UK, pp. 987–992 (2013)Google Scholar
  11. 11.
    L. Filipovic, S. Selberherr, G.C. Mutinati, E. Brunet, S. Steinhauer, A. Köck, J. Teva, J. Kraft, J. Siegert, F. Schrank, C. Gspan, W. Grogger, Modeling the growth of thin SnO2 films using spray pyrolysis deposition. In Proceedings of International Conference on Simulation of Processes and Devices (SISPAD) 2013, 3–5 Sept 2013, Glasgow, UK, pp. 208–211Google Scholar
  12. 12.
    L. Filipovic, S. Selberherr, G.C. Mutinati, E. Brunet, S. Steinhauer, A. Köck, J. Teva, J. Kraft, J. Siegert, F. Schrank, A method for simulating spray pyrolysis deposition in the level set framework. Eng. Lett. 21(4), 224–240 (2013)Google Scholar
  13. 13.
    W. Göpel, K. Schierbaum, SnO2 sensors: current status and future prospects. Sens. Actuator B 26(1–3), 1–12 (1995)CrossRefGoogle Scholar
  14. 14.
    J. Greenwood, The correct and incorrect generation of a cosine distribution of scattered particles for Monte-Carlo modelling of vacuum systems. Vacuum 67(2), 217–222 (2002)CrossRefGoogle Scholar
  15. 15.
    C. Griessler, E. Brunet, T. Maier, S. Steinhauer, A. Köck, J. Teva, F. Schrank, M. Schrems, Tin oxide nanosensors for highly sensitive toxic gas detection and their 3D system integration. Microelectron. Eng. 88(8), 1779–1781 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Joseph, V. Mathew, J. Mathew, K. Abraham, Studies on physical properties and carrier conversion of SnO2:Nd thin films. Turkish J. Phys. 33, 37–47 (2009)Google Scholar
  17. 17.
    G. Korotcenkov, V. Brinzari, J. Schwank, M. DiBattista, A. Vasiliev, Peculiarities of SnO2 thin film deposition by spray pyrolysis for gas sensor application. Sens. Actuator B 77(1–2), 244–252 (2001)CrossRefGoogle Scholar
  18. 18.
    S. Major, A. Banerjee, K. Chopra, Highly transparent and conducting indium-doped zinc oxide films by spray pyrolysis. Thin Solid Films 108(3), 333–340 (1983)CrossRefGoogle Scholar
  19. 19.
    G.L. Messing, S.C. Zhang, G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis. J. Am. Ceram. Soc. 76(11), 2707–2726 (1993)CrossRefGoogle Scholar
  20. 20.
    G. Mutinati, E. Brunet, S. Steinhauer, A. Köck, J. Teva, J. Kraft, J. Siegert, F. Schrank, E. Bertagnolli, CMOS-integrable ultrathin SnO2 layer for smart gas sensor devices. Procedia Eng. 47, 490–493 (2012)CrossRefGoogle Scholar
  21. 21.
    A. Nakaruk, C. Sorrell, Conceptual model for spray pyrolysis mechanism: fabrication and annealing of titania thin films. J. Coat. Technol. Res. 7(5), 665–676 (2010)CrossRefGoogle Scholar
  22. 22.
    S.H. Ng, J. Wang, D. Wexler, S.Y. Chew, H.K. Liu, Amorphous carbon-coated silicon nanocomposites: a low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries. J. Phys. Chem. C 111(29), 11131–11138 (2007)CrossRefGoogle Scholar
  23. 23.
    S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    G. Patil, D. Kajale, V. Gaikwad, G. Jain, Spray pyrolysis deposition of nanostructured tin oxide thin films. ISRN Technol. 2012(1–5), 275872 (2012)Google Scholar
  25. 25.
    D. Perednis, L.J. Gauckler, Solid oxide fuel cells with electrolytes prepared via spray pyrolysis. Solid State Ion. 166(3–4), 229–239 (2004)CrossRefGoogle Scholar
  26. 26.
    D. Perednis, L.J. Gauckler, Thin film deposition using spray pyrolysis. J. Electroceram. 14(2), 103–111 (2005)CrossRefGoogle Scholar
  27. 27.
    C. Poulier, D. Smith, J. Absi, Thermal conductivity of pressed powder compacts: tin oxide and alumina. J. Eur. Ceram. Soc. 27(2), 475–478 (2007)CrossRefGoogle Scholar
  28. 28.
    K. Shamala, L. Murthy, K.N. Rao, Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis methods. Bull. Mater. Sci. 27(3), 295–301 (2004)CrossRefGoogle Scholar
  29. 29.
    M. Siegele, C. Gamauf, A. Nemecek, G.C. Mutinati, S. Steinhauer, A. Kock, J. Kraft, J. Siezert, F. Schrank, Optimized integrated micro-hotplates in CMOS technology. In Proceedings of IEEE International New Circuit and Systems Conference (NEWCAS) 2013, 16–19 June 2013, Paris, France, pp. 1–4 (2013)Google Scholar
  30. 30.
    S. Sinha, R. Bhattacharya, S. Ray, I. Manna, Influence of deposition temperature on structure and morphology of nanostructured SnO2 films synthesized by pulsed laser deposition. Mater. Lett. 65(2), 146–149 (2011)CrossRefGoogle Scholar
  31. 31.
    A. Tischner, T. Maier, C. Stepper, A. Köck, Ultrathin SnO2 gas sensors fabricated by spray pyrolysis for the detection of humidity and carbon monoxide. Sens. Actuators B 134(2), 796–802 (2008)CrossRefGoogle Scholar
  32. 32.
    I. Volintiru, A. de Graaf, J. Van Deelen, P. Poodt, The influence of methanol addition during the film growth of SnO2 by atmospheric pressure chemical vapor deposition. Thin Solid Films 519(19), 6258–6263 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Lado Filipovic
    • 1
    Email author
  • Siegfried Selberherr
    • 1
  • Giorgio C. Mutinati
    • 2
  • Elise Brunet
    • 2
  • Stephan Steinhauer
    • 2
  • Anton Köck
    • 2
  • Jordi Teva
    • 3
  • Jochen Kraft
    • 3
  • Jörg Siegert
    • 3
  • Franz Schrank
    • 3
  • Christian Gspan
    • 4
  • Werner Grogger
    • 4
  1. 1.Institute for MicroelectronicsTechnische Universität WienWienAustria
  2. 2.Molecular Diagnostics, Health and EnvironmentAIT GmbHWienAustria
  3. 3.ams AGUnterpremstättenAustria
  4. 4.Institute for Electron Microscopy and Fine Structure ResearchGraz University of Technology and the Centre for Electron Microscopy GrazGrazAustria

Personalised recommendations