Advertisement

Prediction of Thermal Deformation for a Ball Screw System Under Composite Operating Conditions

  • A. S. Yang
  • S. Z. Chai
  • H. H. Hsu
  • T. C. Kuo
  • W. T. Wu
  • W. H. Hsieh
  • Y. C. Hwang
Conference paper

Abstract

The position error of a feed drive system is mostly caused by thermal deformation of a ball screw shaft. A high-speed ball screw system can generate massive heat with greater thermal expansion produced, and consequently have a negative effect on the positioning accuracy. In this study, we applied the computational approach using the finite element method (FEM) to simulate the thermal expansion process for estimating the deformation of the ball screw system. In the numerical analysis, the deformation of the ball screw shaft and nut was modeled via a linear elasticity approach along with the assumption that the material was elastic, homogeneous, and isotropic. To emulate the reciprocating movements of the nut at the speeds of 20, 40 and 60 m/min corresponding to the screw shaft, we also employed a three-dimensional unsteady heat conduction equation with the heat generation from the main sources including the ball screw shaft, nut and bearings as the heat transfer model to solve the temperature distributions for determining the temperature rises and axial thermal deformations in a ball screw shaft under composite operating conditions. The simulated results demonstrated that the countermeasures must be taken to thermally compensate great deterioration of the positioning accuracy due to vast heat production at high rotating speeds of shaft for a ball screw system.

Keywords

Ball screws FEM Heat transfer model Machine tool Positioning accuracy Thermal deformation 

Notes

Acknowledgment

This study represents part of the results under the financial support of Ministry of Economic Affairs (MOEA) and HIWIN Technologies Corp., Taiwan, ROC (Contract No. 100-EC-17-A-05-S1-189).

References

  1. 1.
    R. Ramesh, M.A. Mannan, A.N. Po, Error compensation in machine tools—a review. Part II: thermal error. Int. J. Mach. Tools Manuf. 40, 1257–1284 (2000)CrossRefGoogle Scholar
  2. 2.
    W.S. Yun, S.K. Kim, D.W. Cho, Thermal error analysis for a CNC lathe feed drive system. Int. J. Mach. Tools Manuf. 39, 1087–1101 (1999)CrossRefGoogle Scholar
  3. 3.
    J. Bryan, International status of thermal error research. Ann. CIRP. 39(2), 645–656 (1990)CrossRefMathSciNetGoogle Scholar
  4. 4.
    R. Ramesh, M.A. Mannan, A.N. Po, Thermal error measurement and modeling in machine tools. Part I. Influence of varying operation conditions. Int. J. Mach. Tools Manuf. 43, 391–404 (2003)CrossRefGoogle Scholar
  5. 5.
    J.S. Chen, A study of thermally induced machine tool errors in real cutting conditions. Int. J. Mach. Tools Manuf. 36, 1401–1411 (1996)CrossRefGoogle Scholar
  6. 6.
    S. Li, Y. Zhang, G. Zhang, A study of pre-compensation for thermal errors of NC machine tools. Int. J. Mach. Tools Manuf. 37, 1715–1719 (1997)CrossRefGoogle Scholar
  7. 7.
    C.H. Lo, J. Yuan, J. Ni, An application of real-time error compensation on a turning center. Int. J. Mach. Tools Manuf. 35, 1669–1682 (1995)CrossRefGoogle Scholar
  8. 8.
    M. Xu, S.Y. Jiang, Y. Cai, An improved thermal model for machine tool bearings. Int. J. Mach. Tools Manuf. 47, 53–62 (2007)CrossRefGoogle Scholar
  9. 9.
    S. Koda, T. Murata, K. Ueda, T. Sugita, Automatic compensation of thermal expansion of ball screw in machining centers. Trans. Jpn. Soc. Mech. Eng. Part C. 21, 154–159 (1990)CrossRefGoogle Scholar
  10. 10.
    ANSYS, 13 User Guide. ANSYS Inc. Canonsburg, PA, USA (2010)Google Scholar
  11. 11.
    A.S. Yang, S.Z. Cai, S.H. Hsieh, T.C. Kuo, C.C. Wang, W.T. Wu, W.H. Hsieh, Y.C. Hwang, in Thermal deformation estimation for a hollow ball screw feed drive system. Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering, WCE 2013, 3–5 July, 2013, London, U.K., pp. 2047–2052Google Scholar
  12. 12.
    A. Verl, S. Frey, Correlation between feed velocity and preloading in ball screw drives. Ann. CIRP 59(2), 429–432 (2010)Google Scholar
  13. 13.
    T.A. Harris, Rolling Bearing Analysis. (Wiley & Sons, New York, 1991), pp. 540–560Google Scholar
  14. 14.
    H. Li, Y.C. Shin, Integrated dynamic thermo-mechanical modeling of high speed spindles, part I: model development. Trans. ASME, J. Manuf. Sci. Eng. 126, 148–158 (2004)CrossRefGoogle Scholar
  15. 15.
    Z.Z. Xu, X.J. Liu, H.K. Kim, J.H. Shin, S.K. Lyu, Thermal error forecast and performance evaluation for an air-cooling ball screw system. Int. J. Mach. Tools Manuf. 51, 605–611 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • A. S. Yang
    • 1
  • S. Z. Chai
    • 1
  • H. H. Hsu
    • 1
  • T. C. Kuo
    • 2
  • W. T. Wu
    • 3
  • W. H. Hsieh
    • 2
  • Y. C. Hwang
    • 4
  1. 1.Department of Energy and Refrigerating Air-Conditioning EngineeringNational Taipei University of TechnologyTaipeiTaiwan
  2. 2.Department of Mechanical Engineering, and Advanced Institute of Manufacturing with High-tech InnovationsNational Chung-Cheng UniversityChiayiTaiwan
  3. 3.Department of Biomechatronics Engineering Nation Pingtung University of Science and TechnologyPingtungTaiwan
  4. 4.HIWIN Technologies CorpTaichungTaiwan

Personalised recommendations