Relative Position Computation of Links in Planar Six-Bar Mechanisms with Joints Clearance and Complex Chain

Conference paper

Abstract

The presence of clearance in the mechanical joints leads to small position variation of the mechanism elements. The goal of this work is to model and analyze the equilibrium positions of elements in planar six-bar mechanisms with complex chain. To solve this subject, it is necessary to use a mathematical optimization code in order to obtain the optimal solution of the problem. To show the effectiveness of the proposed method, examples are presented and the numerical results obtained show that a good convergence was obtained in each case.

Keywords

Complex chain Joint clearance Loaded link Mechanical elements position Optimization Six-bar mechanism analysis 

Notes

Acknowledgment

This work was carried out under the support of the research program of Lebanese University

References

  1. 1.
    A. Potiron, P. Dal Santo, M. Younes, Étude bidimensionnelle du positionnement relatif des éléments de mécanismes avec jeu dans les liaisons par une méthode d’optimisation. Mécanique Ind. 4, 229–238 (2003)Google Scholar
  2. 2.
    H. Funabashi, K. Ogawa, M. Horie, A dynamic analysis of mechanisms with clearance. Bull JSME 21(161), 1652–1659 (1978)CrossRefGoogle Scholar
  3. 3.
    M. Giordano, collective, Modèle de détermination des tolérances géométriques, in Conception de produits mécaniques, chapter 13, ed. by M. Tollenaere (HERMES, Paris, 1998)Google Scholar
  4. 4.
    J. Gao, K.W. Chase, S.P. Magleby, General 3-D tolerance analysis of mechanical assemblies with small kinematic adjustments. IIE Trans. 30, 367–377 (1998)Google Scholar
  5. 5.
    K.W. Chase, J. Gao, S.P. Magleby, General 2-D tolerance analysis of mechanical assemblies with small kinematic adjustments. J. Des. Manuf. 5, 263–274 (1995)CrossRefGoogle Scholar
  6. 6.
    K.W. Chase, A.R. Parkinson, A survey of research in the application of tolerance analysis to the design of mechanical assemblies. Res. Eng. Des. 3, 23–37 (1991)CrossRefGoogle Scholar
  7. 7.
    S. Erkaya, I. Uzmay, Investigation on effect of joint clearance on dynamics of four-bar mechanism. Nonlinear Dyn. 58(1–2), 179–198 (2009)CrossRefMATHGoogle Scholar
  8. 8.
    J.-F. Hsieh, Numerical analysis of displacements in spatial mechanisms with spherical joints utilizing an extended D-H notation. Trans. Can. Soc. Mech. Eng. 34(3–4), 417–431 (2010)Google Scholar
  9. 9.
    M. Younes, A. Potiron, in Influence of Clearance Joints on the Elements Position of Planar Six-Bar Mechanisms with Complex Chain. Lecture notes in Engineering and Computer Science: Proceeding of The World Congress on Engineering (WCE 2013), London, UK, 3–5 July 2013, pp. 1899–1903Google Scholar
  10. 10.
    G.N. Vanderplaats, Numerical optimization techniques for engineering design with applications (Mc Graw-Hill Book Company, New York, 1984)MATHGoogle Scholar
  11. 11.
    P. Germain, P. Muller, in Introduction à la mécanique des milieux continus (Masson, Paris, 1980)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Lebanese University, University Institute of TechnologySaidaLebanon
  2. 2.Ecole Nationale Supérieure d’Arts et Métiers, Laboratoire LAMPA Arts et Métiers Paris Tech AngersAngers CedexFrance

Personalised recommendations