Skip to main content

THz Active Imaging Systems with Real-Time Capabilities

  • Conference paper
  • First Online:
THz and Security Applications

Abstract

This paper presents a survey of the status of five active THz imaging modalities which we have developed and investigated during the last few years with the goal to explore their potential for real-time imaging. We start out by introducing a novel waveguide-based all-electronic imaging system which operates at 812 GHz. Its salient feature is a 32-pixel linear detector array heterodyne-operated at the 8th subharmonic. This array in combination with a telescope optics for object distances of 2–6 m reaches a data acquisition speed suited for real-time imaging. The second system described then is again an all-electronic scanner (now for around 300 GHz), designed for object distances of ≥8 m, which combines mechanical scanning in vertical direction, synthetic-aperture image generation in horizontal direction, and frequency-modulated continuous-wave sweeping for the depth information. The third and fourth systems follow an optoelectronic approach by relying on several- to multi-pixel parallel electro-optic detection. One imager is based on a pulsed THz-OPO and homodyne detection with a CCD camera, the other on either continuous-wave electronic or femtosecond optoelectronic THz sources and a photonic-mixing device (PMD) camera. The article concludes with a description of the state of the art of imaging with focal-plane arrays based on CMOS field-effect transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To reach such a result, we consider a system with an input average THz power of <P> = 4 μW, corresponding to a peak power of P0 = 40 mW. Assuming a power collection efficiency of 10−4 from the scattering object, we have a THz peak power of P = 4 μW at the EO detector, which translates to an electric field amplitude of E = 6 V/m in the EO detection (assuming 100 effective pixels, each an area of (3λ)2 at 1 THz). Based on the typical sensitivity of crossed-polarizer EO detection [35] (modulation depth coefficient kEO = 2.5⋅10−6 (V/m)−1), the achievable modulation depth is 1.5⋅10−5. This is equal to the relative shot noise of a CCD/CMOS camera system (such as the CCD employed here, described below) after binning from 106 CCD pixels down to a 100 THz-image pixels with a 50 ms integration time.

References

  1. Liu H-B, Zhong H, Karpowicz N, Chen Y, Zhang X-C (2007) Terahertz spectroscopy and imaging for defense and security applications. Proc IEEE 95:1514–1527

    Article  Google Scholar 

  2. Fischer BM, Demarty Y, Schneider M, Löffler T, Keil A, Quast H (2010) THz all-electronic 3D imaging for safety and security applications. Proc SPIE 7671, 767111–767111-7

    Google Scholar 

  3. Davies AG, Burnett AD, Fan WH, Linfield EH, Cunningham JE (2008) Terahertz spectroscopy of explosives and drugs. Mater Today 11:18–26

    Article  Google Scholar 

  4. Krumbholz N, Hochrein T, Vieweg N, Hasek T, Kretschmer K, Bastian M, Mikulic M, Koch M (2009) Monitoring polymeric compounding processes inline with THz time-domain spectroscopy. Polym Test 28:30–35

    Article  Google Scholar 

  5. Hasegawa N, Löffler T, Thomson M, Roskos HG (2003) Remote identification of protrusions and dents on surfaces by terahertz reflectometry with spatial beam filtering and out-of-focus detection. Appl Phys Lett 83:3996–3998

    Article  ADS  Google Scholar 

  6. Banerjee D, von Spiegel W, Thomson MD, Schabel S, Roskos G (2008) Diagnosing water content in paper by terahertz radiation. Opt Express 16(12):9060–9066

    Article  ADS  Google Scholar 

  7. Kawase K, Shibuya T, Hayashi S’i, Suizu K (2010) THz imaging techniques for nondestructive inspections. Comptes Rendus Physique 11:510–518

    Article  ADS  Google Scholar 

  8. Hils B, Thomson MD, Löffler T, von Spiegel W, am Weg C, Roskos H, de Maagt P, Doyle D, Geckeler RD (2008) Terahertz profilometry at 600 GHz with 0.5 m depth resolution. Opt Express 16:11289–11293

    Article  ADS  Google Scholar 

  9. Roggenbuck A, Schmitz H, Deninger A, Cámara Mayorga I, Hemberger J, Gsten R, Grüninger M (2010) Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples. New J Phys 12:043017

    Article  Google Scholar 

  10. Strachan CJ, Taday PF, Newnham DA, Gordon KC, Zeitler JA, Pepper M, Rades T (2005) Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity. J Pharm Sci 94:837–846

    Article  Google Scholar 

  11. Nagel M, Richter F, Haring Bolívar P, Kurz H (2003) A functionalized THz sensor for marker-free DNA analysis. Phys Med Biol 48:3625–3636

    Article  Google Scholar 

  12. Cooper KB, Dengler RJ, Llombart N, Talukder A, Panangadan AV, Peay CS, Mehdi I, Siegel PH (2010) Fast, high-resolution terahertz radar imaging at 25 meters. Proc SPIE 7671:76710Y

    Article  ADS  Google Scholar 

  13. Cooper KB, Dengler RJ, Chattopadhyay G, Schlecht E, Skalare A, Mehdi I, Siegel PH (2008) Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar. IEEE Microw Theory Tech 56(12):2771–2778

    Article  Google Scholar 

  14. Pradarutti B, Müller R, Matthäus G, Brückner C, Riehemann S, Notni G, Nolte S, Tunnermann A (2007) Multichannel balanced electro-optic detection for terahertz imaging. Opt Express 15:17652–17660

    Article  ADS  Google Scholar 

  15. Pradarutti B, Müller R, Freese W, Matthäus G, Riehemann S, Notni G, Nolte S, Tunnermann A (2008) Terahertz line detection by a microlens array coupled photoconductive antenna array. Opt Express 16:18443–18450

    Article  ADS  Google Scholar 

  16. Dai JM, Liu J, Zhang X-C (2011) Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma. IEEE J Sel Top Quantum Electron 17:183–190

    Article  Google Scholar 

  17. Malcolm G (2011) Terahertz laser sources based on optical parametric oscillators. In: Perenzoni M, Paul D (eds) Proceedings of the 6th Optoelectronics and Photonics Winter School, Fai della Paganella, 20–26 Feb 2011

    Google Scholar 

  18. Wohnsiedler S, Theuer M, Herrmann M, Islam S, Jonuscheit J, Beigang R, Hase F (2009) Simulation and experiment of terahertz stand-off detection. Proc SPIE 7215:72150H

    Article  ADS  Google Scholar 

  19. von Spiegel W, am Weg C, Henneberger R, Zimmermann R, Löffler T, Roskos HG (2009) Active THz imaging system with improved frame rate. Proc SPIE 7311:73110O

    Article  Google Scholar 

  20. von Spiegel W, am Weg C, Henneberger R, Zimmermann R, Roskos HG (2010) Illumination aspects in active terahertz imaging. IEEE Trans Microw Theory Tech 58:2008–2013

    Article  ADS  Google Scholar 

  21. am Weg C, von Spiegel W, Henneberger R, Zimmermann R, Löffler T, Roskos HG (2009) Quasioptical system design. Proc SPIE 7215:72150R

    Article  Google Scholar 

  22. am Weg C, von Spiegel W, Henneberger R, Zimmermann R, Löffler T, Roskos HG (2009) Fast active THz cameras with ranging capabilities. Infrared Millim THz Waves 30:1281–1296

    Google Scholar 

  23. am Weg C, von Spiegel W, Henneberger R, Zimmermann R, Löffler T, Roskos HG (2009) Fast active THz camera with range detection by frequency modulation. Proc SPIE 7215:72150F

    Article  Google Scholar 

  24. Kemp MC (2006) Millimetre wave and terahertz technology for the detection of concealed threats a review. Proc SPIE 6402:64020D

    Article  ADS  Google Scholar 

  25. Krozer V, Löffler T, Dall J, Kusk A, Eichhorn F, Olsson RK, Buron J, Jepsen PU, Zhurbenko V, Jensen T (2010) THz imaging systems with aperture synthesis techniques. IEEE Trans Microw Theory Tech 58:2027–2039

    Article  ADS  Google Scholar 

  26. Miyashiro K, Schellenberg J, Loveberg J, Kolinko V, McCoy J (2007) An E-band electronically scanned imaging radar system. In: Proceedings of the IMS, IEEE/MTT-S International Microwave Symposium, Honolulu, Hawaii

    Google Scholar 

  27. Manasson V, Sadovnik L, Mino R, Rodionov S (2000) Novel passive millimeter-wave imaging system: prototype fabrication and testing. Proc SPIE 4032:2–13

    Article  ADS  Google Scholar 

  28. Natarajan A, Komijani A, Guan X, Babakhani A, Wang Y, Hjimiri A (2006) A 77GHz phased-array transmitter with local LOPath phase-shifting in silicon. IEEE J Solid State Circ 41:2795–2806

    Article  Google Scholar 

  29. Schulwitz L, Mortazawi A (2005) A compact dual-polarized multibeam phased-array architecture for millimeter-wave radar. IEEE Trans Microw Theory Tech 53(11):3588–3594

    Article  ADS  Google Scholar 

  30. Skou N, Le Vine D (2006) Microwave radiometer systems; design and analysis, 2nd edn. Artech House, Boston

    Google Scholar 

  31. Ruf CS (1993) Numerical annealing of low-redundancy linear arrays. IEEE Trans Antenna Propag 41:85–90

    Article  ADS  Google Scholar 

  32. Yegulalp AF (1999) Fast backprojection algorithm for synthetic aperture radar. In: Radar conference, 1999. The record of the 1999 IEEE, Waltham, MA, USA, pp 60–65

    Google Scholar 

  33. Basu S, Bresler Y (2002) O(N3logN) backprojection algorithm for Radon transform. IEEE Trans Med Imaging 21:76–88

    Article  Google Scholar 

  34. Ulander LMH, Hellsten H, Stenström G (2003) Synthetic-aperture radar processing using fast factorized back-projection. IEEE Trans Aerosp Electron Syst 39:760–776

    Article  ADS  Google Scholar 

  35. Wu Q, Hewitt TD, Zhang X-C (1996) Two-dimensional electro-optic imaging of THz beams. Appl Phys Lett 69:1026–1028

    Article  ADS  Google Scholar 

  36. Yasuda T, Kawada Y, Toyoda H, Takahashi H (2007) Terahertz movies of internal transmission images. Opt Express 15:15583–15588

    Article  ADS  Google Scholar 

  37. Nahata A, Yardley JT, Heinz TF (2002) Two-dimensional imaging of continuous-wave terahertz radiation using electro-optic detection. Appl Phys Lett 81:963–965

    Article  ADS  Google Scholar 

  38. Kawase K, Ogawa Y, Minamide H, Ito H (2005) Terahertz parametric sources and imaging applications. Semicond Sci Technol 20:S258–S265

    Article  ADS  Google Scholar 

  39. Edwards TJ, Walsh D, Spurr MB, Rae CF, Dunn MH, Browne PG (2006) Compact source of continuously and widely-tunable terahertz radiation. Opt Express 14:1582–1589

    Article  ADS  Google Scholar 

  40. Zhao G, Schouten RN, van der Valk N, Wenckebach WT, Planken PC (2002) Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter. Rev Sci Instrum 73:1715–1719

    Article  ADS  Google Scholar 

  41. Dreyhaupt A, Winnerl S, Dekorsy T, Helm M (2005) High-intensity terahertz radiation from a microstructured large-area photoconductor. Appl Phys Lett 86:121114

    Article  ADS  Google Scholar 

  42. Loffler T, Kreß M, Thomson M, Hahn T, Hasegawa N, Roskos HG (2005) Comparative performance of terahertz emitters in amplifier-laser-based systems. Semicond Sci Technol 20:S134–S141

    Article  ADS  Google Scholar 

  43. Bartel T, Gaal P, Reimann K, Woerner M, Elsaesser T (2005) Generation of single-cycle THz transients with high electric-field amplitudes. Opt Lett 30:28052807

    Article  Google Scholar 

  44. Thomson MD, Blank V, Roskos HG (2010) Terahertz white-light pulses from an air plasma photo-induced by incommensurate two-color optical fields. Opt Express 18:23173–23182

    Article  ADS  Google Scholar 

  45. Meng F, Molter D et al THz imaging with a THz-OPO and a CMOS camera (unpublished)

    Google Scholar 

  46. Meng FZ, Thomson D, Molter D, Löffler T, Bartschke J, Bauer T, Nittmann M, Roskos HG (2010) Coherent electro-optical detection of THz radiation from an optical parametric oscillator. Opt Express 18:11316–11326

    Article  ADS  Google Scholar 

  47. Molter D, Theuer M, Beigang R (2009) Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate. Opt Express 17:6623–6628

    Article  ADS  Google Scholar 

  48. Bauer T, Kolb JS, Löffler T, Mohler E, Roskos HG, Pernisz UC (2002) Indium-tin-oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation. J Appl Phys 92:2210–2212

    Article  ADS  Google Scholar 

  49. Meng F, Thomson MD, Blank V, von Spiegel W, Loffler T, Roskos G (2009) Characterizing large-area electro-optic crystals toward two-dimensional real-time terahertz imaging. Appl Opt 48:51975204

    Google Scholar 

  50. Wu Q, Zhang X-C (1995) Free-space electro-optic sampling of terahertz beams. Appl Phys Lett 67:3523–3525

    Article  ADS  Google Scholar 

  51. Loffler T, May T, am Weg C, Alcin A, Hils B, Roskos HG (2007) Continuous-wave terahertz imaging with a hybrid system. Appl Phys Lett 90:091111

    Article  ADS  Google Scholar 

  52. May T, am Weg C, Alcin A, Hils B, Loffler T, Roskos HG (2007) Towards an active real-time THz camera: First realization of a hybrid system. Proc SPIE 6549:654907

    Article  Google Scholar 

  53. Friederich F, Schuricht G, Deninger A, Lison F, Spickermann G, Haring Bolívar P, Roskos HG (2010) Phase-locking of the beat signal of two distributed-feedback lasers to oscillators working in the MHz to THz range. Opt Express 18:8621–8629

    Article  Google Scholar 

  54. Spickermann G (2012) Terahertz-Bildgebung mit demodulierendem Detektorarray, dissertation, Universität Siegen, Germany

    Google Scholar 

  55. Spickermann G, Friederich F, Roskos HG, Haring Bolívar P (2009) A high signal-to-noise ratio electrooptical THz imaging system based on an optical demodulating detector array. Opt Lett 34:3424–3426

    Article  ADS  Google Scholar 

  56. Friederich F, Spickermann G, Roggenbuck A, Deninger A, am Weg C, von Spiegel W, Lison F, Haring Bolívar P, Roskos HG (2010) Hybrid continuous-wave demodulating multipixel terahertz imaging systems. IEEE Trans Microw Theory Tech 58:2022–2026

    Article  ADS  Google Scholar 

  57. Ringbeck T, Möller T, Hagebeuker B (2007) Multidimensional measurement by using 3-D PMD sensors. Adv Radio Sci 5:135–146

    Article  ADS  Google Scholar 

  58. Ringbeck T (2007) A 3D time of flight camera for object detection. Presented at the 8th conference on optical 3-D measurement techniques, ETH Zurich, Zurich, Switzerland, July 2007

    Google Scholar 

  59. Gallot G, Grischkowsky D (1999) Electro-optic detection of terahertz radiation. J Opt Soc Am B 16:1204–1212

    Article  ADS  Google Scholar 

  60. Jiang Z, Sun FG, Chen Q (1999) Electro-optic sampling near zero optical transmission point. Appl Phys Lett 74:1191–1193

    Article  ADS  Google Scholar 

  61. Ortolani M, Di Gaspare A, Casini R (2011) Progress in producing terahertz detector arrays. SPIE Newsroom. Feb. 14, 2011, doi:10.1117/2.1201101.003449

  62. Lee AWM, Hu Q (2005) Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array. Appl Phys Lett 30:2563–2565

    Google Scholar 

  63. Lee AWM, Qin Q, Kumar S, Williams BS, Hu Q (2006) Real-time terahertz imaging over a standoff distance (> 25 meters). Appl Phys Lett 89:141125

    Article  ADS  Google Scholar 

  64. Simoens F, Durand T, Meilhan J, Gellie P, Maineult W, Sirtori C, Barbieri S, Beere H, Ritchie D (2009) Terahertz imaging with a quantum cascade laser and amorphous-silicon microbolometer array. Proc SPIE 7485:74850M

    Article  ADS  Google Scholar 

  65. Li Q, Ding S-H, Yao R, Wang Q (2010) Real-time terahertz scanning imaging by use of a pyroelectric array camera and image denoising. J Opt Soc Am A 27:2381–2386

    Article  ADS  Google Scholar 

  66. Tauk R, Teppe F, Boubanga S, Coquillat D, Knap W, Meziani YM, Gallon C, Boeuf F, Skotnicki T, Fenouillet-Beranger C, Maude K, Rumyantsev S, Shur MS (2006) Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power. Appl Phys Lett 89:253511

    Article  ADS  Google Scholar 

  67. Dyakonov M, Shur M (1996) Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans Electron Devices 43:380–387

    Article  ADS  Google Scholar 

  68. Allen SJ, Tsui DC, Logan RA (1977) Observation of the two-dimensional plasmon in silicon inversion layers. Phys Rev Lett 38:980983

    Article  ADS  Google Scholar 

  69. Knap W, Kachorovskii V, Deng Y, Rumyantsev S, Lü J-Q, Gaska R, Shur MS, Simin G, Hu X, Asif Khan M, Saylor CA, Brunel LC (2002) Nonresonant detection of terahertz radiation in field effect transistors. J Appl Phys 91:9346–9353

    Article  ADS  Google Scholar 

  70. Lisauskas A, Pfeiffer U, Ojefors E, Haring Bolívar P, Glaab D, Roskos HG (2009) Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J Appl Phys 105:114511

    Article  ADS  Google Scholar 

  71. Ojefors E, Pfeiffer U, Lisauskas A, Roskos HG (2009) A 0.65 THz focal-plane array in a quarter-micron CMOS process technology. IEEE J Solid State Circ 44:1968–1976

    Article  Google Scholar 

  72. Lisauskas A, von Spiegel W, Boubanga-Tombet S, El Fatimy A, Coquillat D, Teppe F, Dyakonova N, Knap W, Roskos HG (2008) Terahertz imaging with GaAs field-effect transistors. Electron Lett 44:408–409

    Article  Google Scholar 

  73. Lisauskas A, Glaab D, Roskos HG, Ojefors E, Pfeiffer U (2009) Terahertz imaging with Si MOSFET focal-plane arrays. Proc SPIE 7215:72150

    Article  ADS  Google Scholar 

  74. Ojefors E, Lisauskas A, Glaab D, Roskos HG, Pfeiffer UR (2009) Terahertz imaging detectors in CMOS technology. J Infrared Millim THz Waves 30:1269–1280

    Google Scholar 

  75. Ojefors E, Baktash N, Zhao Y, Al Hadi R, Sherry H, Pfeiffer UR (2010) Terahertz imaging detectors in a 65-nm CMOS SOI technology. In: Proceedings of the ESSCIRC, Seville, Spain, pp 486–489, September 2010

    Google Scholar 

  76. Boppel S, Lisauskas A, Krozer V, Roskos HG (2011) Performance and performance variations of sub-1-THz detectors fabricated with a 0.15-m CMOS foundry process. Electron Lett 47(11):661–662 (appears on May 26, 2011)

    Article  Google Scholar 

  77. Stillman WJ, Shur MS (2007) Closing the gap: plasma wave electronic terahertz detectors. J Nanoelectron Optoelectron 2:209–221

    Article  Google Scholar 

  78. Stillman W, Shur MS, Veksler D, Rumyantsev S, Guarin F (2007) Device loading effects on nonresonant detection of terahertz radiation by silicon MOSFETs. Electron Lett 43:422–423

    Article  Google Scholar 

  79. Glaab D, Boppel S, Lisauskas A, Pfeiffer U, Ojefors E, Roskos HG (2010) Terahertz heterodyne detection with silicon field-effect transistors. Appl Phys Lett 96:042106

    Article  ADS  Google Scholar 

  80. Pfeiffer U, Ojefors E, Lisauskas A, Glaab D, Roskos HG (2009) A CMOS focal-plane array for heterodyne terahertz imaging. In: IEEE RFIC symposium, Boston, MA, USA, pp 433–436

    Google Scholar 

  81. Boppel S, Lisauskas A, Pfeiffer U, Ojefors E, Roskos HG (2010) Field effect transistors for power and heterodyne detection of terahertz radiation fabricated in CMOS technology. In: Proceedings of the of NATO SET Panel Meeting SET-159 Terahertz and other electromagnetic wave techniques for defence and security, Vilnius, 3–4 May 2010

    Google Scholar 

  82. Pfeiffer UR, Ojefors E, Lisauskas A, Roskos HG (2008) Opportunities for silicon at mmwave and terahertz frequencies. In: IEEE BCTM proceedings (Proceedings of the 2008 bipolar/BICMOS circuits and technology meeting), Monterey, CA, USA, pp 149–156

    Google Scholar 

  83. Ojefors E, Pfeiffer UR (2010) A 650 GHz receiver front-end for terahertz imaging arrays. In: IEEE International Solid-State Circuits Conference ISSCC, San Francisco, CA, USA, pp 430–432

    Google Scholar 

Download references

Acknowledgments

The work presented here was funded by numerous sources, including the Federal Ministry of Education and Research Germany (BMBF) through projects LYNKEUS, TERACAM, TEKZAS, and LiveDetect3D; the German Research Foundation (DFG) through PAK-73 “Dynamisches 3D Sehen mit PMD”; the European Space Agency ESA/ESTEC (contract no. 21155/07/NL/ST); WI Bank Hessen; Oerlikon AG. We are grateful for contributions by TOPTICA GmbH (Munich); Xiton GmbH (Kaiserslautern); D. Molter, J. Jonuscheit, and R. Beigang of the Fraunhofer-Institut IPM (Kaiserslautern); J. Dall, A. Kusk, V. Zhurbenko and T. Jensen of Denmark Technical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut G. Roskos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Friederich, F. et al. (2014). THz Active Imaging Systems with Real-Time Capabilities. In: Corsi, C., Sizov, F. (eds) THz and Security Applications. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8828-1_9

Download citation

Publish with us

Policies and ethics