Skip to main content

Phytate in Animal Manure and Soils: Abundance, Cycling and Bioavailability

  • Chapter
  • First Online:

Abstract

The importance of phytate in phosphorus (P) cycling in soil and manure has long been recognized. Phytate is a storage compound in seeds that cannot be fully digested by many animal species, resulting in the accumulation of phytate in manures. It can enter the soil either directly from plants, or from application of manures. In this chapter we will discuss the abiotic and biotic factors that control the cycling and bioavailability of phytate in soil and manure. An understanding of these processes is key to enhancing the availability of P to plants and animals, minimizing the losses of P from soil to water, and sustainably managing the use of P in agricultural systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ajiboye B, Akinremi OO, Hu Y, Flaten DN (2007) Phosphorus speciation of sequential extracts of organic amendments using nuclear magnetic resonance and X-ray absorption near-edge structure spectroscopies. J Environ Qual 36:1563–1576

    PubMed  CAS  Google Scholar 

  • Ajiboye B, Akinremi OO, Hu Y, Jürgensen A (2008) XANES speciation of phosphorus in organically amended and fertilized vertisol and mollisol. Soil Sci Soc Am J 72:1256–1262

    CAS  Google Scholar 

  • Anderson G, Arlidge EZ (1962) The adsorption of inositol phosphates and glycerophosphate by soil clays, clay minerals and hydrated sesquioxides in acid media. J Soil Sci 25:51–62

    Google Scholar 

  • Anderson G, Malcolm RE (1974) The nature of alkaline soluble soil organic phosphates. J Soil Sci 25:282–297

    CAS  Google Scholar 

  • Appiah MR, Thomas RL (1982) Inositol phosphate and organic phosphorus contents and phosphatase activity of some Canadian and Ghanian soil. Can J Soil Sci 62:31–38

    CAS  Google Scholar 

  • Baknäs S, Laine-Kauio H, Kløve B (2012) Phosphorus forms and related soil chemistry in preferential flowpaths and the soil matrix of a forested podzolic till soil profile. Geoderma 189–190:50–64

    Google Scholar 

  • Barrientos LG, Murthy PPN (1996) Conformational studies of myo-inositol phosphates. Carbohydr Res 296:39–54

    PubMed  CAS  Google Scholar 

  • Barrow NJ, Bowdan JW, Posner AM, Quirk JP (1980) Describing the effects of electrolyte on adsorption of phosphate by variable charge surface. Aust J Soil Res 18:395–404

    CAS  Google Scholar 

  • Barrow NJ, Brummer GW, Strauss R (1993) Effects of surface heterogeneity on ion adsorption by metal-oxides and by soils. Langmuir 9:2606–2611

    CAS  Google Scholar 

  • Berg AS, Joern BC (2006) Sorption dynamics of organic and inorganic phosphorus compounds in soil. J Environ Qual 35:1855–1862

    PubMed  CAS  Google Scholar 

  • Berry DF, Berry DA (2005) Tethered phytic acid as a probe for measuring phytase activity. Bioorg Med Chem Lett 15:3157–3161

    PubMed  CAS  Google Scholar 

  • Berry DF, Shang C, Zelazny LW (2009) Measurement of phytase activity in soil using a chromophoric tethered phytic acid probe. Soil Biol Biochem 41:192–200

    CAS  Google Scholar 

  • Bolan NS, Syers JK, Tillman RW (1986) Ionic-strength effects on surface charge and adsorption of phosphate and sulfate by soils. J Soil Sci 37:379–388

    CAS  Google Scholar 

  • Bolan NS, Naidu R, Mahimairaja S, Baskaran S (1994) Influence of low-molecular-weight organic acids on the solubilization of phosphate. Biol Fertil Soils 18:311–319

    CAS  Google Scholar 

  • Borie F, Zunino H, Martinez L (1989) Macromolecule-P associations and inositol phosphates in some Chilean volcanic soils of temperate regions. Commun Soil Sci Plant Anal 20:1881–1894

    CAS  Google Scholar 

  • Browne P, Rice O, Miller SH, Burke J, Dowling DN, Morrissey JP, O’Gara F (2009) Superior inorganic phosphate solubilization is linked to phylogeny within the Pseudomonas fluorescens complex. Appl Soil Ecol 43:131–138

    Google Scholar 

  • Bünemann EK (2008) Enzyme additions as a tool to assess the potential bioavailability of organically bound nutrients. Soil Biol Biochem 40:2116–2129

    Google Scholar 

  • Bünemann EK, Oberson A, Liebisch F, Keller F, Annaheim KE, Huguenin-Elie O, Frossard E (2012) Rapid microbial phosphorus immobilization dominates gross phosphorus fluxes in a grassland soil with low inorganic phosphorus availability. Soil Biol Biochem 51:84–95

    Google Scholar 

  • Cade-Menun BJ, Preston CM (1996) A comparison of soil extraction procedures for P-31 NMR spectroscopy. Soil Sci 161:770–785

    CAS  Google Scholar 

  • Cade-Menun BJ, Carter MR, James DC, Liu CW (2010) Phosphorus forms and chemistry in the soil profile under long-term conservation tillage: a phosphorus-31 nuclear magnetic resonance study. J Environ Qual 39:1647–1656

    PubMed  CAS  Google Scholar 

  • Caldwell AG, Black CA (1958) Inositol hexaphosphate. II. Synthesis by soil microorganisms. Soil Sci Soc Am J 22:293–296

    CAS  Google Scholar 

  • Celi L, Barberis E (2007) Abiotic reactions of inositol phosphates in soils. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB International, Oxfordshire, pp 207–220

    Google Scholar 

  • Celi L, Lamacchia S, Marsan FA, Barberis E (1999) Interaction of inositol hexaphosphate on clays: adsorption and charging phenomena. Soil Sci 164:574–585

    CAS  Google Scholar 

  • Celi L, Barberis E, Ajmone-Marsan F (2000) Sorption of phosphate on goethite at high concentrations. Soil Sci 165:657–664

    CAS  Google Scholar 

  • Celi L, Presta M, Ajmore-Marsan F, Barberis E (2001) Effects of pH and electrolytes on inositol hexaphosphate interaction with goethite. Soil Sci Soc Am J 65:753–760

    CAS  Google Scholar 

  • Celi L, De Luca G, Barberis E (2003) Effects of interaction of organic and inorganic P with ferrihydrite and kaolinite-iron oxide systems on iron release. Soil Sci 168:479–488

    CAS  Google Scholar 

  • Chan WL, Lung SC, Lim BL (2006) Properties of beta-propeller phytase expressed in transgenic tobacco. Protein Expr Purif 46:100–106

    PubMed  CAS  Google Scholar 

  • Chang CW (1966) Study of phytase and fluoride effects in germinating corn seeds. Cereal Chem 43:129–142

    Google Scholar 

  • Chen CR, Condron LM, Turner BL, Mahieu N, Davies MR, Xu ZH, Sherlock RR (2004) Mineralisation of soil orthophosphate monoesters under pine seedlings and ryegrass. Aust J Soil Res 42:189–196

    CAS  Google Scholar 

  • Condron LM, Turner BL, Cade-Menun BJ (2005) Chemistry and dynamics of soil organic phosphorus. In: Sims JT, Sharpley AN (eds) Phosphorus, agriculture and the environment, Monograph no 46. Soil Science Society of America, Madison, pp 87–121

    Google Scholar 

  • Conte P, Šmejkalová D, Piccolo A, Spaccini R (2008) Evaluation of the factors affecting direct polarization solid-state 31P NMR spectroscopy of bulk soils. Eur J Soil Sci 59:584–591

    CAS  Google Scholar 

  • Cooper WT, Heerboth M, Salters VJM (2007) High-performance chromatographic separations of inositol phosphates and their detection by mass spectrometry. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB International, Oxfordshire, pp 23–40

    Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change Hum Policy Dim 19:292–305

    Google Scholar 

  • Cosgrove DJ (1964) An examination of some possible sources of soil inositol phosphates. Plant Soil 21:137–141

    Google Scholar 

  • Dao TH (2003) Polyvalent cation effects on myo-inositol Hexakis dihydrogenphosphate enzymatic dephosphorylation in dairy wastewater. J Environ Qual 32:694–701

    PubMed  CAS  Google Scholar 

  • Dao TH (2007) Ligand effects on inositol phosphate solubility and bioavailability in animal manures. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB International, Oxfordshire, pp 169–185

    Google Scholar 

  • De Groot CJ, Golterman HL (1993) On the presence of organic phosphate in some Camargue sediments – evidence for the importance of phytate. Hydrobiologia 252:117–126

    Google Scholar 

  • Doolette AL, Smernik RJ, Dougherty WJ (2009) Spiking improved solution phosphorus-31 nuclear magnetic resonance identification of soil phosphorus compounds. Soil Sci Soc Am J 73:919–927

    CAS  Google Scholar 

  • Doolette AL, Smernik RJ, Dougherty WJ (2010) Rapid decomposition of phytate applied to a calcareous soil demonstrated by a solution 31P NMR study. Eur J Soil Sci 61:563–575

    CAS  Google Scholar 

  • Doolette AL, Smernik RJ, Dougherty WJ (2011) A quantitative assessment of phosphorus forms in some Australian soils. Soil Res 49:152–165

    CAS  Google Scholar 

  • Dou ZX, Ramberg CF, Toth JD, Wang Y, Sharpley AN, Boyd SE, Chen CR, Williams D, Xu ZH (2009) Phosphorus speciation and sorption–desorption characteristics in heavily manured soils. Soil Sci Soc Am J 73:93–101

    CAS  Google Scholar 

  • Eivazi F, Tabatabai MA (1977) Phosphatases in soils. Soil Biol Biochem 9:167–172

    CAS  Google Scholar 

  • Fransson AM, Jones DL (2007) Phosphatase activity does not limit the microbial use of low molecular weight organic-P substrates in soil. Soil Biol Biochem 39:1213–1217

    CAS  Google Scholar 

  • Fu DW, Huang HQ, Luo HY, Wang YR, Yang PL, Meng K, Bai YG, Wu NF, Yao B (2008) A highly pH-stable phytase from Yersinia kristeensenii: cloning, expression, and characterization. Enzym Microb Technol 42:499–505

    CAS  Google Scholar 

  • George TS, Richardson AE, Simpson RJ (2005a) Behaviour of plant-derived extracellular phytase upon addition to soil. Soil Biol Biochem 37:977–988

    CAS  Google Scholar 

  • George TS, Simpson RJ, Hadobas PA, Richardson AE (2005b) Expression of a fungal phytase gene in Nicotiana tabacum improves phosphorus nutrition of plants grown in amended soils. Plant Biotechnol J 3:129–140

    PubMed  CAS  Google Scholar 

  • George TS, Quiquampoix H, Simpson RJ, Richardson AE (2007a) Interactions between phytases and soil constituents: implications for the hydrolysis of inositol phosphates. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB International, Oxfordshire, pp 221–241

    Google Scholar 

  • George TS, Simpson RJ, Gregory PJ, Richardson AE (2007b) Differential interaction of Aspergillus niger and Peniophora lycii phytases with soil particles affects the hydrolysis of inositol phosphates. Soil Biol Biochem 39:793–803

    CAS  Google Scholar 

  • George TS, Richardson AE, Li SS, Gregory PJ, Daniell TJ (2009) Extracellular release of a heterologous phytase from roots of transgenic plants: does manipulation of rhizosphere biochemistry impact microbial community structure? FEMS Microbiol Ecol 70:433–445

    PubMed  CAS  Google Scholar 

  • Giaveno C, Celi L, Maja Aveiro Cessa R, Prati M, Bonifacio E, Barberis E (2010a) Interaction of organic phosphorus with clays extracted from Oxisols. Soil Sci 173:694–706

    Google Scholar 

  • Giaveno C, Celi L, Richardson A, Simpson RJ, Barberis E (2010b) Interaction of phytases with minerals and availability of substrate affect the hydrolysis of inositol phosphates. Soil Biol Biochem 42:491–498

    CAS  Google Scholar 

  • Giles CD, Cade-Menun BJ, Hill JE (2011) The inositol phosphates in soils and manures: abundance, cycling and measurements. Can J Soil Sci 91:397–416

    Google Scholar 

  • Giles CD, Richardson AE, Druschel GK, Hill JE (2012) Organic anion-driven solubilization of precipitated and sorbed phytate improves hydrolysis by phytases and bioavailability to Nicotiana tabacum. Soil Sci 177:591–598

    CAS  Google Scholar 

  • Giles CD, Hsu L, Richardson AE, Hurst M, Hill JE (2014) Plant assimilation of phosphorus from an insoluble organic form is improved by addition of an organic anion producing Pseudomonas sp. Soil Biol Biochem 68:263–269

    Google Scholar 

  • Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium-phosphate solubilization by Gram-negative bacteria. Biol Agric Hortic 12:185–193

    Google Scholar 

  • Greiner R (2007) Phytate-degrading enzymes: regulation of synthesis in microorganisms and plants. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB International, Oxfordshire, pp 78–96

    Google Scholar 

  • Guan X-H, Shang C, Zhu J, Chen G-H (2006) ATR-FTIR investigation on the complexation of myo-inositol hexaphosphate with aluminum hydroxide. J Colloid Interface Sci 293:296–302

    PubMed  CAS  Google Scholar 

  • Hansen JC, Cade-Menun BJ, Strawn DG (2004) Phosphorus speciation in manure-amended alkaline soils. J Environ Qual 33:1521–1527

    PubMed  CAS  Google Scholar 

  • Hayatsu M (2013) Utilization of phytic acid by cooperative interaction in rhizosphere. Microbes Environ 28:1–2

    Google Scholar 

  • Hayes JE, Richardson AE, Simpson RJ (1999) Phytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume seedlings. Aust J Plant Physiol 26:801–809

    CAS  Google Scholar 

  • Hayes JE, Richardson AE, Simpson RJ (2000a) Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase. Biol Fertil Soils 32:279–286

    CAS  Google Scholar 

  • Hayes JE, Simpson RJ, Richardson AE (2000b) The growth and phosphorus utilisation of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant Soil 220:165–174

    CAS  Google Scholar 

  • He ZQ, Honeycutt CW (2001) Enzymatic characterization of organic phosphorus in animal manure. J Environ Qual 30:1685–1692

    PubMed  CAS  Google Scholar 

  • He ZQ, Honeycutt CW (2005) A modified molybdenum blue method for orthophosphate determination suitable for investigating enzymatic hydrolysis of organic phosphates. Commun Soil Sci Plant Anal 36:1373–1383

    CAS  Google Scholar 

  • He ZQ, Griffin TS, Honeycutt CW (2004) Enzymatic hydrolysis of organic phosphorus in swine manure and soil. J Environ Qual 33:367–372

    PubMed  CAS  Google Scholar 

  • He ZQ, Honeycutt CW, Zhang TQ, Bertsch PM (2006a) Preparation and FT-IR characterization of metal phytate compounds. J Environ Qual 35:1319–1328

    PubMed  CAS  Google Scholar 

  • He ZQ, Toor GS, Honeycutt CW, Sims JT (2006b) An enzymatic hydrolysis approach for characterizing labile phosphorus forms in dairy manure under mild assay conditions. Bioresour Technol 97:1660–1668

    PubMed  CAS  Google Scholar 

  • He ZQ, Cade-Menun BJ, Toor GS, Fortuna AM, Honeycutt CW, Sims JT (2007a) Comparison of phosphorus forms in wet and dried animal manures by solution phosphorus-31 nuclear magnetic resonance spectroscopy and enzymatic hydrolysis. J Environ Qual 36:1086–1095

    PubMed  CAS  Google Scholar 

  • He ZQ, Honeycutt CW, Xing B, McDowell RW, Pellechia PJ, Zhang TQ (2007b) Solid-state fourier transform infrared and P-31 nuclear magnetic resonance spectral features of phosphate compounds. Soil Sci 172:501–515

    CAS  Google Scholar 

  • He ZQ, Honeycutt CW, Zhang TQ, Pellechia PJ, Caliebe WA (2007c) Distinction of metal species of phytate by solid-state spectroscopic techniques. Soil Sci Soc Am J 71:940–943

    CAS  Google Scholar 

  • He ZQ, Honeycutt CW, Cade-Menun BJ, Senwo ZN, Tazisong IA (2008) Phosphorus in poultry litter and soil: enzymatic and nuclear magnetic resonance characterization. Soil Sci Soc Am J 72:1425–1433

    CAS  Google Scholar 

  • He ZQ, Honeycutt CW, Griffin TS, Cade-Menun BJ, Pellechia PJ, Dou ZX (2009a) Phosphorus forms in conventional and organic dairy manure identified by solution and solid state P-31 NMR spectroscopy. J Environ Qual 38:1909–1918

    PubMed  CAS  Google Scholar 

  • He ZQ, Waldrip HW, Honeycutt CW, Erich MS, Senwo ZN (2009b) Enzymatic quantification of phytate in animal manure. Commun Soil Sci Plant Anal 40:566–575

    CAS  Google Scholar 

  • He ZQ, Olk DC, Cade-Menun BJ (2011) Forms and lability of phosphorus in humic acid fractions of Hord silt loam soil. Soil Sci Soc Am J 75:1712–1722

    CAS  Google Scholar 

  • He ZQ, Zhong J, Cheng HN (2013) Conformational change of metal phytates: solid state 1D 13C and 2D 1H–13C NMR spectroscopic investigations. J Food Agric Environ 11:965–970

    CAS  Google Scholar 

  • Hedley MJ, Stewart JWB, Chauhan BS (1982) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976

    CAS  Google Scholar 

  • Hill JE, Cade-Menun BJ (2009) Phosphorus-31 nuclear magnetic resonance spectroscopy transect study of poultry operations on the Delmarva Peninsula. J Environ Qual 38:130–138

    PubMed  CAS  Google Scholar 

  • Hill JE, Richardson AE (2007) Isolation and assessment of microorganisms that utilize phytate. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB International, Oxfordshire, pp 61–77

    Google Scholar 

  • Hunger S, Cho H, Sims JT, Spark DL (2004) Direct speciation of phosphorus in alum-amended poultry litter: solid-state P-31 NMR investigation. Environ Sci Technol 38:674–681

    PubMed  CAS  Google Scholar 

  • Hunger S, Sims JT, Sparks DL (2008) Evidence for struvite in poultry litter: effects of storage and drying. J Environ Qual 37:1617–1625

    PubMed  CAS  Google Scholar 

  • Irving GCJ, Cosgrove DJ (1981) The use of hypobromite oxidation to evaluate two current methods for the estimation of inositol polyphosphates in alkaline extracts of soils. Commun Soil Sci Plant Anal 12:495–509

    CAS  Google Scholar 

  • Irving GCJ, Cosgrove DJ (1982) The use of gas–liquid-chromatography to determine the proportions of inositol isomers present as pentakisphosphates and hexakisphosphates in alkaline extracts of soils. Commun Soil Sci Plant Anal 13:957–967

    CAS  Google Scholar 

  • Islam A, Ahmed B (1973) Distribution of inositol phosphates, phospholipids and nucleic acids and mineralization of inositol phosphates in some Bangladesh soils. J Soil Sci 24:193–198

    CAS  Google Scholar 

  • Johnson NR, Hill JE (2010) Phosphorus species composition of poultry manure-amended soil using high-throughput enzymatic hydrolysis. Soil Sci Soc Am J 74:1786–1791

    CAS  Google Scholar 

  • Johnson BB, Quill E, Angove MJ (2012) An investigation of the mode of sorption of inositol hexaphosphate to goethite. J Colloid Interface Sci 367:436–442

    PubMed  CAS  Google Scholar 

  • Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247–257

    CAS  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, van Hees PAW (2003) Organic acid behavior in soils – misconceptions and knowledge gaps. Plant Soil 248:31–41

    CAS  Google Scholar 

  • Jorquera MA, Hernandez MT, Rengel Z, Marschner P, Mora MD (2008) Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils 44:1025–1034

    CAS  Google Scholar 

  • Keller M, Oberson A, Annaheim KE, Tamburini F, Mader P, Mayer J, Frossard E, Bünemann EK (2012) Phosphorus forms and enzymatic hydrolyzability of organic phosphorus in soils after 30 years of organic and conventional farming. J Plant Nutr Soil Sci 175:385–393

    CAS  Google Scholar 

  • Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J (1998) Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kong F, Lin W, Yan X, Liao H (2005) Phytate-phosphorus uptake and utilization by transgenic tobacco carrying Bacillus subtilis phytase gene. Yingyong Shengtai Xuebao 16:2389–2393

    PubMed  CAS  Google Scholar 

  • Kruse J, Leinweber P (2008) Phosphorus in sequentially extracted fen peat soils: a K-edte X-ray absorption near-edge structure (XANES) spectroscopy study. J Plant Nutr Soil Sci 171:613–620

    CAS  Google Scholar 

  • L’Annunziata MF (2013) Soil inositol phosphate biochemistry: a call to link radiotracer applications with spectroscopic structural analysis. Soil Sci Soc Am J 77:1107–1116

    Google Scholar 

  • Leytem AB, Maguire RO (2007) Environmental implications of inositol phosphates in animal manure. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB International, Oxfordshire, pp 150–168

    Google Scholar 

  • Leytem AB, Thacker PA (2008) Fecal phosphorus excretion and characterization from swine fed diets containing a variety of cereal grains. J Anim Vet Adv 7:113–120

    CAS  Google Scholar 

  • Leytem AB, Smith DR, Applegate TJ, Thacker PA (2006) The influence of manure phytic acid on phosphorus solubility in calcareous soils. Soil Sci Soc Am J 70:1629–1638

    CAS  Google Scholar 

  • Leytem AB, Plumstead PW, Maguire RO, Kwanyuen P, Brake J (2007) What aspect of dietary modification in broilers controls litter water-soluble phosphorus: dietary phosphorus, phytase, or calcium? J Environ Qual 36:453–463

    PubMed  CAS  Google Scholar 

  • Leytem AB, Kwanyuen P, Plumstead PW, Maguire RO, Brake J (2008) Evaluation of phosphorus characterization in broiler ileal digesta, manure, and litter samples: P-31-NMR vs. HPLC. J Environ Qual 37:494–500

    PubMed  CAS  Google Scholar 

  • Lim BL, Yeung P, Cheng C, Hill JE (2007) Distribution and diversity of phytate-mineralizing bacteria. ISME J 1:321–330

    PubMed  CAS  Google Scholar 

  • Liu J, Wang X, Huang H, Want J, Li Z, Wu L, Zhang G, Ma Z (2012) Efficiency of phosphorus utilization in phyA-expressing cotton lines. Indian J Biochem Biophys 49:250–256

    PubMed  CAS  Google Scholar 

  • Liu J, Yang J, Cade-Menun BJ, Liang X, Hu Y, Liu CW, Zhao Y, Li L, Shi J (2013) Complementary phosphorus speciation in agricultural soils by sequential fractionation, solution 31P NMR, and P K-edge XANES spectroscopy. J Environ Qual 42:1763–1770

    CAS  Google Scholar 

  • Lolas GM, Markakis P (1977) The phytase of navy beans (Phaseolus vulgaris). J Food Sci 42:1094–1097

    CAS  Google Scholar 

  • Lung SC, Lim BL (2006) Assimilation of phytate-phosphorus by the extracellular phytase activity of tobacco (Nicotiana tabacum) is affected by the availability of soluble phytate. Plant Soil 279:187–199

    CAS  Google Scholar 

  • Lung SC, Chan WL, Yip W, Wang LJ, Yeung EC, Lim BL (2005) Secretion of beta-propeller phytase from tobacco and Arabidopsis roots enhances phosphorus utilization. Plant Sci 169:341–349

    CAS  Google Scholar 

  • Lung SC, Leung A, Kuang R, Wang Y, Leung P, Lim BL (2008) Phytase activity in tobacco (Nicotiana tabacum) root exudates is exhibited by a purple acid phosphatase. Phytochemistry 69:365–373

    PubMed  CAS  Google Scholar 

  • Makoi J, Ndakidemi PA (2008) Selected soil enzymes: examples of their potential roles in the ecosystem. Afr J Biotechnol 7:181–191

    CAS  Google Scholar 

  • Mandal NC, Burman S, Biwas BB (1972) Isolation, purification and characterisation of phytase from germinating mung beans. Phytochemistry 11:495–502

    CAS  Google Scholar 

  • Martin CJ, Evans WJ (1987) Phytic acid-divalent-cation interactions. V. Titrimetric, colorimetric, and binding studies with cobalt (II) and nickel (II) and their comparison with other metal ions. J Inorg Biochem 30:101–119

    CAS  Google Scholar 

  • Martin M, Celi L, Barberis E (2002) Extractability and plant availability of phosphate from P-goethite complexes. Commun Soil Sci Plant Anal 33:143–153

    CAS  Google Scholar 

  • Martin M, Celi L, Barberis E (2004) Desorption and plant availability of myo-inositol hexaphosphate adsorbed on goethite. Soil Sci 169:115–124

    CAS  Google Scholar 

  • McDowell RW, Condron LM, Stewart I, Cave V (2005) Chemical nature and diversity of phosphorus in New Zealand pasture soils using P-31 nuclear magnetic resonance spectroscopy and sequential fractionation. Nutr Cycl Agroecosyst 72:241–254

    CAS  Google Scholar 

  • McDowell RW, Cade-Menun B, Stewart I (2007) Organic phosphorus speciation and pedogenesis: analysis by solution 31P nuclear magnetic resonance spectroscopy. Eur J Soil Sci 58:1348–1357

    CAS  Google Scholar 

  • McGrath JM, Sims JT, Maguire RO, Saylor WW, Angel CR, Turner BL (2005) Broiler diet modification and litter storage: impacts on phosphorus in litters, soils, and runoff. J Environ Qual 34:1896–1909

    PubMed  CAS  Google Scholar 

  • McKercher RB, Anderson G (1968a) Characterization of inositol penta- and hexaphosphate fractions of a number of Canadian and Scottish soils. J Soil Sci 19:303–310

    Google Scholar 

  • McKercher RB, Anderson G (1968b) Content of inositol penta- and hexaphosphates in some Canadian soils. J Soil Sci 19:47–55

    CAS  Google Scholar 

  • McKercher RB, Anderson G (1989) Organic phosphate sorption by neutral and basic soils. Commun Soil Sci Plant Anal 20:723–732

    CAS  Google Scholar 

  • Menezes-Blackburn D, Jorquera MA, Greiner R, Gianfreda L, Mora M (2013) Phytases and phytase-labile organic phosphorus in manures and soils. Crit Rev Environ Sci Technol 43:916–954

    CAS  Google Scholar 

  • Miller SH, Browne P, Prigent-Combaret C, Combes-Meyne E, Morrissey JP, O’Gara F (2010) Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Environ Microbiol Rep 2:403–411

    PubMed  CAS  Google Scholar 

  • Mozaffari M, Sims JT (1994) Phosphorus availability and sorption in an Atlantic coastal-plain watershed dominated by animal-based agriculture. Soil Sci 157:97–107

    CAS  Google Scholar 

  • Mozaffari M, Sims JT (1996) Phosphorus transformations in poultry litter-amended soils of the Atlantic coastal plain. J Environ Qual 25:1357–1365

    CAS  Google Scholar 

  • Mullaney EJ, Ulla AHJ (2007) Phytases: attributes, catalytic mechanisms and applications. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB International, Oxfordshire, pp 97–110

    Google Scholar 

  • Murphy PNC, Bell A, Turner BL (2009) Phosphorus speciation in temperate basaltic grassland soils by solution 31P NMR spectroscopy. Eur J Soil Sci 60:638–651

    CAS  Google Scholar 

  • Nagai Y, Funahashi S (1962) Phytase from wheat bran. I. Purification and substrate specificity. Agric Biol Chem 26:794–803

    CAS  Google Scholar 

  • Noack SR, McLaughlin MJ, Smernik RJ, McBeath TM, Armstrong RD (2012) Crop residue phosphorus: speciation and potential bio-availability. Plant Soil 359:375–385

    CAS  Google Scholar 

  • Oburger E, Jones DL, Wenzel WW (2011) Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion-mediated P solubilization mechanisms in soil. Plant Soil 341:363–382

    CAS  Google Scholar 

  • Ognalaga M, Frossard E, Thomas F (1994) Glucose-1-phosphate and myo-inositol hexaphosphate adsorption mechanisms on goethite. Soil Sci Soc Am J 58:332–337

    CAS  Google Scholar 

  • Oh BC, Chang BS, Park KH, Ha NC, Kim HK, Oh BH, Oh TK (2001) Calcium-dependent catalytic activity of a novel phytase from Bacillus amyloliquefaciens DS11. Biochemistry 40:9669–9676

    PubMed  CAS  Google Scholar 

  • Olsson R, Giesler R, Loring JS, Persson P (2012) Enzymatic hydrolysis of organic phosphates adsorbed on mineral surfaces. Environ Sci Technol 46:285–291

    PubMed  CAS  Google Scholar 

  • Palomo L, Claassen N, Jones DL (2006) Differential mobilization of P in the maize rhizosphere by citric acid and potassium citrate. Soil Biol Biochem 38:683–692

    CAS  Google Scholar 

  • Pant HK, Edwards AC, Vaughan D (1994) Extraction, molecular fractionation and enzyme degradation of organically associated phosphorus in soil solutions. Biol Fertil Soils 17:196–200

    CAS  Google Scholar 

  • Patel KJ, Singh AK, Nareshkumar G, Archana G (2010a) Organic-acid-producing, phytate-mineralizing rhizobacteria and their effect on growth of pigeon pea (Cajanus cajan). Appl Soil Ecol 44:252–261

    Google Scholar 

  • Patel KJ, Vig S, Nareshkumar G, Archana G (2010b) Effect of transgenic rhizobacteria overexpressing Citrobacter braakii appA on phytate-P availability to mung bean plants. J Microbiol Biotechnol 20:1491–1499

    PubMed  CAS  Google Scholar 

  • Plumstead PW, Leytem AB, Maguire RO, Spears JW, Kwanyuen P, Brake J (2008) Interaction of calcium and phytate in broiler diets. 1. Effects on apparent prececal digestibility and retention of phosphorus. Poult Sci 87:449–458

    PubMed  CAS  Google Scholar 

  • Prietzel J, Dümig A, Wu Y, Zhou J, Klysubun W (2013) Synchrotron-based P K-edge XANES spectroscopy reveals rapid changes of phosphorus speciation in the topsoil of two glacier foreland chronosequences. Geochim Cosmochim Acta 108:154–171

    CAS  Google Scholar 

  • Raboy V (2007) Seed phosphorus and the development of low-phytate crops. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB International, Oxfordshire, pp 111–132

    Google Scholar 

  • Ramaekers L, Remans R, Rao IM, Blair MW, Vanderleyden J (2010) Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Res 117:169–176

    Google Scholar 

  • Richardson AE, Hadobas PA (1997) Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol 43:509–516

    PubMed  CAS  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996

    PubMed Central  PubMed  CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2000) Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ 23:397–405

    CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001a) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649

    PubMed  CAS  Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE, O’Hara CP, Simpson RJ (2001b) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms. Plant Soil 229:47–56

    CAS  Google Scholar 

  • Richardson AE, George TS, Jakobsen I, Simpson RJ (2007) Plant utilization of inositol phosphates. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB International, Oxfordshire, pp 242–260

    Google Scholar 

  • Richardson AE, Hocking PJ, Simpson RJ, George TS (2009) Plant mechanisms to optimize access to soil phosphorus. Crop Pasture Sci 60:124–143

    CAS  Google Scholar 

  • Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Ryan MH, Veneklaas EJ, Lambers H, Oberson A, Culveno RA, Simpson RJ (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349:121–156

    CAS  Google Scholar 

  • Sattari SZ, Bouwman AF, Giller KE, van Ittersum MK (2012) Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc Natl Acad Sci U S A 109:6348–6353

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schlemmer U, Frølich W, Prieto RM, Grases F (2009) Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res 53:S330–S375

    PubMed  Google Scholar 

  • Sepehr E, Rengel Z, Fateh E, Sadaghiani MR (2012) Differential capacity of wheat cultivars and white lupin to acquire phosphorus from rock phosphate, phytate and soluble phosphorus sources. J Plant Nutr 35:1180–1191

    CAS  Google Scholar 

  • Shand CA, Smith S (1997) Enzymatic release of phosphate from model substrates and P compounds in soil solution from a peaty podzol. Biol Fertil Soils 24:183–187

    CAS  Google Scholar 

  • Shand CA, Cheshire MV, Bedrock CN, Chapman PJ, Frase AR, Chudek JA (1999) Solid-phase 31P NMR spectra of peat and mineral soils, humic acids and soil solution components: influence of iron and manganese. Plant Soil 214:153–163

    CAS  Google Scholar 

  • Sharpley AN, Chapra SC, Wedepohl R, Sims JT, Daniel TC, Reddy KR (1994) Managing agricultural phosphorus for protection of surface waters – issues and options. J Environ Qual 23:437–451

    CAS  Google Scholar 

  • Shears SB, Turner BL (2007) Nomenclature and terminology of inositol phosphates: clarification and a glossary of terms. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB International, Oxfordshire, pp 1–6

    Google Scholar 

  • Shober AL, Hesterberg DL, Sims JT, Gardner S (2006) Characterization of phosphorus species in biosolids and manures using XANES spectroscopy. J Environ Qual 35:1983–1993

    PubMed  CAS  Google Scholar 

  • Smernik RJ, Dougherty WJ (2007) Identification of phytate in phosphorus-31 nuclear magnetic resonance spectra: the need for spiking. Soil Sci Soc Am J 71:1045–1050

    CAS  Google Scholar 

  • Smith MTE, Cade-Menun BJ, Tibbett M (2006) Soil phosphorus dynamics from sewage sludge at different stages in a treatment stream. Biol Fertil Soils 42:186–197

    Google Scholar 

  • Tang J, Leung A, Leung C, Lim BL (2006) Hydrolysis of precipitated phytate by three distinct families of phytases. Soil Biol Biochem 38:1316–1324

    CAS  Google Scholar 

  • Tazisong IA, Senwo ZN, Taylor RW, He ZQ (2008) Hydrolysis of organic phosphates by commercially available phytases: biocatalytic potentials and effects of ions on their enzymatic activities. J Food Agric Environ 6:500–505

    CAS  Google Scholar 

  • Toor GS, Peak JD, Sims JT (2005a) Phosphorus speciation in broiler litter and turkey manure produced from modified diets. J Environ Qual 34:687–697

    PubMed  CAS  Google Scholar 

  • Toor GS, Cade-Menun BJ, Sims JT (2005b) Establishing a linkage between phosphorus forms in dairy diets, feces and manures. J Environ Qual 34:1380–1391

    PubMed  CAS  Google Scholar 

  • Turner BL (2004) Optimizing phosphorus characterization in animal manures by solution phosphorus-31 nuclear magnetic resonance spectroscopy. J Environ Qual 33:757–766

    PubMed  CAS  Google Scholar 

  • Turner BL (2006) Organic phosphorus in Madagascan rice soils. Geoderma 136:279–288

    CAS  Google Scholar 

  • Turner BL (2007) Inositol phosphates in soil: amounts, forms and significance of the phosphorylated inositol stereoisomers. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB International, Oxfordshire, pp 186–206

    Google Scholar 

  • Turner BL, Leytem AB (2004) Phosphorus compounds in sequential extracts of animal manures: chemical speciation and a novel fractionation procedure. Environ Sci Technol 38:6101–6108

    PubMed  CAS  Google Scholar 

  • Turner BL, Richardson AE (2004) Identification of scyllo-inositol phosphates in soil by solution phosphorus-31 nuclear magnetic resonance spectroscopy. Soil Sci Soc Am J 68:802–808

    CAS  Google Scholar 

  • Turner BL, McKelvie ID, Haygarth PM (2002a) Characterisation of water-extractable soil organic phosphorus by phosphatase hydrolysis. Soil Biol Biochem 34:27–35

    CAS  Google Scholar 

  • Turner BL, Paphazy MJ, Haygarth PM, McKelvie ID (2002b) Inositol phosphates in the environment. Phil Trans R Soc Lond B 357:449–469

    CAS  Google Scholar 

  • Turner BL, Cade-Menun BJ, Westermann DT (2003a) Organic phosphorus composition and potential bioavailability in semi-arid arable soils of the western United States. Soil Sci Soc Am J 67:1168–1179

    CAS  Google Scholar 

  • Turner BL, Mahieu N, Condron LM (2003b) Quantification of myo-inositol hexakisphosphate in alkaline soil extracts by solution P-31 NMR spectroscopy and spectral deconvolution. Soil Sci 168:469–478

    CAS  Google Scholar 

  • Turner BL, Cade-Menun BJ, Condron LM, Newman S (2005) Extraction of soil organic phosphorus. Talanta 66:294–306

    PubMed  CAS  Google Scholar 

  • Turner BL, Cheesman AW, Godage HY, Riley AM, Potter BVL (2012) Determination of neo- and D-chiro-inositol hexakisphosphate in soils by solution 31P NMR spectroscopy. Environ Sci Technol 46:4994–5002

    PubMed Central  PubMed  CAS  Google Scholar 

  • Unno Y, Shinano T (2013) Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization. Microbes Environ 28:120–127

    PubMed  Google Scholar 

  • Unno Y, Okubo K, Wasaki J, Shinano T, Osaki M (2005) Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environ Microbiol 7:396–404

    PubMed  Google Scholar 

  • Vincent AG, Schleucher J, Gröbner G, Vestergren J, Persson P, Jansson M, Giesler R (2012) Changes in organic phopshorus composition in boral forest humus soils: the role of iron and aluminium. Biogeochemistry 108:485–499

    CAS  Google Scholar 

  • Wang Y, He Y, Zhang H, Schroder J, Li C, Zhou D (2008) Phosphate mobilization by citric, tartaric, and oxalic acids in a clay loam Ultisol. Soil Sci Soc Am J 72:1263–1268

    CAS  Google Scholar 

  • Wang Y, Ye X, Ding G, Xu F (2013) Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus. PLoS One 8:e60801

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wei LL, Chen CR, Xu ZH (2009) The effect of low-molecular-weight organic acids and inorganic phosphorus concentration on the determination of soil phosphorus by the molybdenum blue reaction. Biol Fertil Soils 45:775–779

    CAS  Google Scholar 

  • Wei LL, Chen CR, Xu ZH (2010) Citric acid enhances the mobilization of organic phosphorus in subtropical and tropical forest soils. Biol Fertil Soils 46:765–769

    CAS  Google Scholar 

  • Yamada K, Minoda Y, Yamamoto S (1968) Phytase from Aspergillus terreus. Part I. Production, purification and some general properties of the enzyme. Agric Biol Chem 32:1275–1282

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara J. Cade-Menun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Giles, C.D., Cade-Menun, B.J. (2014). Phytate in Animal Manure and Soils: Abundance, Cycling and Bioavailability. In: He, Z., Zhang, H. (eds) Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8807-6_9

Download citation

Publish with us

Policies and ethics