Galls of the Temperate Forest of Southern South America: Argentina and Chile

  • Carolina Quintero
  • Lucas A. Garibaldi
  • Audrey Grez
  • Carlo Polidori
  • José Luis Nieves-Aldrey


South American temperate forests are of special conservation concern due to their highly endemic flora and fauna, and the occurrence of unique plant-animal interactions. Yet, knowledge regarding gall inducers diversity is limited although increasing rapidly in the last two decades. Here, we performed a review of the literature, supplemented with field collected data by the authors, in order to provide the most up to date knowledge of gall inducers’ diversity associated with native woody species of the temperate forest of Chile and Argentina. We present data for 90 morphospecies of galls associated with 39 host-plant species (21 genera, 15 families), spanning insects and arachnids of at least 6 orders and nematodes. Most of this richness is associated to the best surveyed host-plant genus, Nothofagus, with up to 43 morphospecies of galls in just 8 dominant tree species. Moreover, we provide evidence that gall species richness across all woody host-plant species decreases with elevation, probably driven by decreased temperature and number of available host-plant species. However, this overall trend vary among host plant species and scales of observation. Overall, the study of gall diversity and the biotic and abiotic factors that shape their distribution in these austral forests offer an exciting and fertile field for future research. Besides emphasizing the need for more in depth taxonomic and diversity studies of the gall fauna of these forests, we propose several future lines of research that promise to further elucidate our understanding of the evolution of plant-gall interactions in these forests.


Nothofagus Aditrochus Temperate forest Elevation gradient Latitudinal gradient 


  1. Abrahamson WG, Hunter MD, Melika G et al (2003) Cynipid gall-wasp communities correlate with oak chemistry. J Chem Ecol 29:209–223PubMedGoogle Scholar
  2. Aizen MA, Ezcurra C (1998) High incidence of plant-animal mutualisms in the temperate forest of southern South America, biogeographical origin and present ecological significance. Ecol Austral 8:217–236Google Scholar
  3. Aizen MA, Ezcurra C (2008) Do leaf margins of the temperate forest flora of southern South America reflect a warmer past? Glob Ecol Biogeogr 17:164–174Google Scholar
  4. Aizen MA, Vázquez DP, Smith-Ramírez C (2002) Historia natural de los mutualismos planta-animal del Bosque Templado de Sudamérica Austral. Rev Chil Hist Nat 75:79–97Google Scholar
  5. Amigo J, Rodriguez-Guitian MA (2011) Bioclimatic and phytosociological diagnosis of the species of the Nothofagus genus in South America. Int J Geobot Res 1:1–20Google Scholar
  6. Armesto JJ, Rozzi R (1989) Seed dispersal syndromes in the rain forest of Chiloé: evidence for the importance of biotic dispersal in a temperate rain forest. J Biogeogr 16:219–226Google Scholar
  7. Armesto JJ, Smith-Ramírez C, Carmona MR et al (2009) Old-growth temperate rainforests of South America: conservation, plant–animal interactions, and baseline biogeochemical processes. In: Wirth C et al (eds) Old-growth forests, ecological studies 207. doi: 10.1007/978-3-540-92706-8_16, #
  8. Arroyo MTK, Cavieres L, Peñaloza A et al (1996) Relaciones fitogeográficas y patrones regionales de riqueza de especies en la flora del bosque lluvioso templado de Sudamérica. In: Armesto JJ, Villagrán C, Arroyo MTK (eds) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago de Chile, pp 71–99Google Scholar
  9. Arroyo MTK, Marquet PA, Marticorena C et al (2004) Chilean winter rainfall-Valdivian forests. In: Mittermeier RA, Gil PR, Hoffmann M et al (eds) Hotspots revised: earth’s biologically wealthiest and most threatened ecosystems. CEMEX, México, pp 99–103Google Scholar
  10. Bairstow KA, Clarke KL, McGeoch MA et al (2010) Leaf miner and plant galler species richness on Acacia: relative importance of plant traits and climate. Oecologia 163:437–448PubMedGoogle Scholar
  11. Bale JS, Masters GJ, Hodkinson IAND et al (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16Google Scholar
  12. Barrancos ML, Moncaglieri R, Farji-Brener A (2008) Infección por agallas y producción de inflorescencias en el arbusto Schinus patagonicus. Ecol Austral 18(1):133–137Google Scholar
  13. Blanche KR (2000) Diversity of insect-induced galls along a temperature-rainfall gradient in the tropical savannah region of the Northern Territory, Australia. Austral Ecol 25:311–318Google Scholar
  14. Blanche KR, Ludwig JA (2001) Species richness of gall-inducing insects and host plants along an altitudinal gradient in Big Bend National Park, Texas. Am Midl Nat 145(2):219–232Google Scholar
  15. Blanche KR, Westoby M (1996) The effect of the taxon and geographic range size of host eucalypt species on the species richness of gall-forming insects. Aust J Ecol 21:332–335Google Scholar
  16. Buffington M, Nieves-Aldrey JL (2011) Revision of Plectocynipinae (Hymenoptera: Figitidae) with descriptions of a new genus and three new species from Chile. Proc Entomol Soc Wash 113(2):91–108Google Scholar
  17. Burckhardt D, Basset Y (2000) The jumping plant-lice (Hemiptera, Psylloidea) associated with Schinus (Anacardiaceae): systematics, biogeography and host plant relationships. J Nat Hist 34:57–155Google Scholar
  18. Cabrera AL, Willink A (1973) Biogeografía de América Latina, Biology series, Monograph 13. General Secretary of the Organization of American States, Washington, DCGoogle Scholar
  19. Carneiro MAA, Fernandes GW, De Souza OFF (2005) Convergence in the variation of local and regional galling species richness. Neotrop Entomol 34(4):547–553Google Scholar
  20. Carrillo R, Cerda L (1987) Zoofitófagos en Nothofagus chilenos. Bosque 8(2):99–103Google Scholar
  21. Cerda E, Angulo A (2002) Insectos asociados a bosques del centro-sur de Chile. In: Baldini A, Pancel L (eds) Agentes de daño en el bosque nativo. Editorial Universitaria, SantiagoGoogle Scholar
  22. Cobb NA (1922) Two tree-infesting nemas of the genus Tylenchus. An Zool Apl 9:27–35Google Scholar
  23. Cornell HV (1985a) Local and regional richness of cynipine gall wasps on California Oaks. Ecology 66:1247–1260Google Scholar
  24. Cornell HV (1985b) Species assemblages of cynipid gall wasps are not saturated. Am Nat 126:565–569Google Scholar
  25. Csóka G, Stone GN, Melika G (2005) The biology, ecology and evolution of gall wasps. In: Raman A, Schaeffer CW, Withers TM (eds) Biology, ecology and evolution of gall-inducing arthropods. Science Publishers, Inc, Enfield, pp 569–636Google Scholar
  26. Cuevas-Reyes P, Quesada M, Siebe C et al (2004) Spatial patterns of herbivory by gall-forming insects: a test of the soil fertility hypothesis in a Mexican tropical dry forest. Oikos 107:181–189Google Scholar
  27. Da Tavares Silva J (1915) Cecidologie Argentine. Broteria 13:88–128Google Scholar
  28. De Santis L, Fidalgo P, Ovruski S (1993) Himenópteros parasitoides de los géneros Aditrochus Ruebsaamen y Espinosa Gahan (Insecta, Hymenoptera, Pteromalidae) asociados a agallas en Nothofagus (Fagaceae) del sur de Argentina y Chile. Acta Entomol Chil 18:133–146Google Scholar
  29. Deutsch CA, Tewksbury JJ, Huey RB et al (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci-Biol 105:6668–6672Google Scholar
  30. Díaz NB (1976) Estudio ecologico y sistematico de cynipoideos Neotropicales I. (Hymenoptera). Plectocynips longicornis gen y sp n. Neotropical 22:99–102Google Scholar
  31. Díaz NB (1981) Cinpoideos galígenos e inquilinos de la República Argentina. Rev Soc Entomol Argent 39:221–226Google Scholar
  32. Díaz NB, De Santis L (1975) Las agallas esferoidales del algarrobo de Chile. Neotropica 21:89–93Google Scholar
  33. Díaz S, Peris S (2011) Consumption of larvae by the Austral Parakeet (Enicognathus ferrugineus). Wilson J Ornithol 123:168–171Google Scholar
  34. Drathen T (1958) Apuntes sobre las agallas del Colliguay. Rev Univ Chile 39:1Google Scholar
  35. Echeverría C, Coomes D, Salas J et al (2006) Rapid deforestation and fragmentation of Chilean temperate forests. Biol Conserv 130:481–494Google Scholar
  36. Espírito-Santo MM, Fernandes GW (2007) How many species of gall-inducing insects are there on earth, and where are they. Ann Entomol Soc Am 100:95–99Google Scholar
  37. Fagundes M, Fernandes GW (2011) Insect herbivores associated with Baccharis dracunculifolia (Asteraceae): responses of gall-forming and free-feeding insects to latitudinal variation. Rev Biol Trop 59:1419–1432PubMedGoogle Scholar
  38. Fernandes GW (1992) Plant size family and age effects on insular gall-forming species richness. Glob Ecol Biogeogr 2:71–74Google Scholar
  39. Fernandes GW (1998) Hypersensitivity as a phenotypic basis of plant induced resistance against a galling insect (Diptera: Cecidomyiidae). Environ Entomol 27:260–267Google Scholar
  40. Fernandes GW, Lara ACF (1993) Diversity of Indonesian gall-forming herbivores along altitudinal gradients. Biodivers Lett 1:186–192Google Scholar
  41. Fernandes GW, Price PW (1988) Biogeographical gradients in galling species richness: tests of hypotheses. Oecologia 76:161–167Google Scholar
  42. Fernandes GW, Price PW (1991) Comparisons of tropical and temperate galling species richness: the roles of environmental harshness and plant nutrient status. In: Price PW, Lewinsohn TM, Fernandes GW et al (eds) Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 91–115Google Scholar
  43. Fernandes GW, Price PW (1992) The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitats. Oecologia 90:14–20Google Scholar
  44. Fernandes GW, Carneiro MAA, Lara ACF et al (1996) Galling insects on Neotropical species of Baccharis (Asteraceae). Trop Zool 9(2):315–332Google Scholar
  45. Fernandes GW, Caldeira Castro FM, Faria ML, Marques ESA, Barcelos Greco MK (2004) Effects of hygrothermal stress, plant richness, and architecture on mining insect diversity. Biotropica 36:240–247Google Scholar
  46. Fuentes-Contreras E, Gianoli E, Caballero PP et al (1999) Influence of altitude and host-plant species on gall distribution in Colliguaja spp. (Euphorbiaceae) in Central Chile. Rev Chil Hist Nat 72:305–313Google Scholar
  47. Garibaldi LA, Kitzberger T, Chaneton EJ (2011a) Environmental and genetic control of insect abundance and herbivory along a forest elevational gradient. Oecologia 167:117–129PubMedGoogle Scholar
  48. Garibaldi LA, Kitzberger T, Ruggiero A (2011b) Latitudinal decrease in folivory within Nothofagus pumilio forests: dual effect of climate on insect density and leaf traits? Glob Ecol Biogeogr 20:609–619Google Scholar
  49. Gentili M, Gentili P (1988) Lista comentada de los insectos asociados a las especies Sudamericanas del genero Nothofagus. Monografías de la Academia Nacional de Ciencias Exactas, Físicas y Naturales, Buenos Aires 4:85–106Google Scholar
  50. Gonzales WL, Caballero PP, Medel R (2005) Galler-induced reduction of shoot growth and fruit production in the shrub Colliguaja integerrima (Euphorbiaceae). Rev Chil Hist Nat 78:393–399Google Scholar
  51. Grandón F (1996) Análisis fitosanitario de los Nothofagus de Chile, desde el punto de vista entomológico. Tesis de Grado para optar al Título de Ingeniero Forestal, Facultad de Ciencias forestales, Universidad Austral de Chile, ChileGoogle Scholar
  52. Grau J (1995) Aspectos geográficos de la flora de Chile. In: Marticorena C, Rodríguez R (eds) Flora de Chile. Universidad de Concepción, Concepción, pp 63–83Google Scholar
  53. Grez AA, Simonetti JA, Bustamante RO (2006) Biodiversidad en ambientes fragmentados de Chile: patrones y procesos a diferentes escalas. Editorial Universitaria, SantiagoGoogle Scholar
  54. Hinojosa LF, Villagrán C (1997) Historia de los bosques del sur de Sudamérica, I: Antecedentes paleobotánicos, geológicos y climáticos del Terciario del cono sur de América. Rev Chil Hist Nat 70:252–239Google Scholar
  55. Hoffmann A (1978) Flora Silvestre de Chile: zona central. Ediciones Fundación Claudio Gay, Santiago de ChileGoogle Scholar
  56. Hoffmann A (1982) Flora Silvestre de Chile: zona araucana. Ediciones Fundación Claudio Gay, Santiago de ChileGoogle Scholar
  57. Houard C (1933) Les Zoocécidies des Plantes de l’Amerique du Sud et de l’Amerique Centrale. Librairie Scientifique A. Hermann, ParisGoogle Scholar
  58. Kieffer JJ (1904a) Description de quelques Cynipides exotiques dont l’un forme un genre nouveau. B Soc Histoire Naturelle de Metz 23:59–66Google Scholar
  59. Kieffer JJ (1904b) Description de quelques Cynipides exotiques dont l’un forme un genre nouveau. Rev Chil Hist Nat 8:43Google Scholar
  60. Kieffer JJ, Herbst P (1905) Ueber gallen und gallenerzeuger aus Chile. Zs Wiss Insektenbiol Husum 10(81):63–66Google Scholar
  61. Kieffer JJ, Herbst P (1906) Description de galles et d’Insectes gallicoles du Chili. Bruxelles Ann Soc Sci 30:223–236Google Scholar
  62. Kieffer JJ, Herbst P (1909) Ueber einige neue Gallen und Gallenerzeuger aus Chile. Centralbl Bakt Iena 23(2):119–126Google Scholar
  63. Kieffer JJ, Herbst P (1911) Ueber gallen und gallentiere aus Chile. Centralbl Bakt Iena 2 t 29:696–703Google Scholar
  64. Kieffer JJ, Jörgensen P (1910) Gallen und Gallentiere aus Argentinien. Centralbl Bakt Iena t 27(2):362–444Google Scholar
  65. Kissinger DG (2005) Review of Apioninae of Chile (Coleoptera: Curculionoidea: Apionidae). Coleopt Bull 59(1):71–90Google Scholar
  66. Klein Koch C, Waterhouse DF (2000) The distribution and importance of arthropods associated with agriculture and forestry in Chile (Distribución e importancia de los artrópodos asociados a la agricultura y silvicultura en Chile). ACIAR monograph no. 68, 234 pGoogle Scholar
  67. Kuschel G (1960) Terrestrial zoology in southern Chile. Proc R Soc Lond B Bio 152:540–550Google Scholar
  68. La Salle J (2005) Biology of gall inducers and evolution of gall induction in Chalcidoidea (Hymenoptera: Eulophidae, Eurytomidae, Pteromalidae, Tanaostigmatidae, Torymidae). In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology, and evolution of gall-inducing arthropods, vol 2. Science Publishers, Inc. Enfield, New Hampshire, pp 507–537Google Scholar
  69. Lara ACF, Fernandes GW (1996) The highest diversity of galling insects: Serra do Cipo, Brazil. Biodivers Lett 3:111–114Google Scholar
  70. Lavandero B, Labra A, Ramírez CC et al (2009) Species richness of herbivorous insects on Nothofagus trees in South America and New Zealand. The importance of chemical attributes of the host. Basic Appl Ecol 10:10–18Google Scholar
  71. Liu Z, Ronquist F (2006) Familia Cynipidae. In: Fernández F, Sharkey MJ (eds) Introducción a los Hymenoptera de la Región Neotropical. Sociedad Colombiana de Entomología y Universidad Nacional de Colombia, Bogotá, pp 839–849Google Scholar
  72. Madrid FG (1974) Rhopalomyia nothofagi Gagne, biología y daño en el roble (Diptera, Cecidomyiidae). Bull Soc Biol Concepcion 48:395–402Google Scholar
  73. Manganaro A (1914) Apuntes cecidiológicos. Anales del Museo Nac Hist Nat Buenos Aires Argent 26:145–150Google Scholar
  74. Marini-Filho OJ, Fernandes GW (2011) Stem galls drain nutrients and decrease shoot performance in Diplusodon orbicularis (Lythraceae). Arthropod-Plant Interact 6:121–128Google Scholar
  75. Markgraf V, McGlone M, Hope G (1995) Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems – a southern perspective. Trends Ecol Evol 10(4):143–147PubMedGoogle Scholar
  76. Martínez E, Montenegro G, Elgueta M (1992) Distribution and abundance of two gall-makers on the euphorbiaceous shrub Colliguaja odorifera. Rev Chil Hist Nat 65:75–82Google Scholar
  77. McQuillan PB (1993) Nothofagus (Fagaceae) and its invertebrate fauna – an overview and preliminary synthesis. Biol J Linn Soc 49:317–354Google Scholar
  78. Mendonça MS (2007) Plant diversity and galling arthropod diversity - searching for taxonomic patterns in an animal-plant interaction in the Neotropics. Bol Soc Argent Bot 42:347–357Google Scholar
  79. Mittermeier RA, Gil PR, Hoffmann M et al (2004) Hotspots revised: earth’s biologically wealthiest and most threatened ecosystems. CEMEX, MéxicoGoogle Scholar
  80. Molina GI (1782) Saggio sulla storia naturale del Chile. Bologna, in 8º, premiere edition, 367 p, 1 carte. Pag. 2134: galle de Baccharis Google Scholar
  81. Moreno I, Vovlas N, Troccoli A (1999) A new leaf gall-nematode on Nothophagus obliqua in Chile. Nematropica 29(1):113–114Google Scholar
  82. Neger FW (1900) Sobre algunas agallas nuevas chilenas. Rev Chil Hist Nat Valparaiso 4:2–3Google Scholar
  83. Nieves-Aldrey JL, Grez A (2007) Two cynipids species inducing galls to herbaceous weeds (Hym., Cynipidae) introduced in Chile. Agrociencia 41:921–927Google Scholar
  84. Nieves-Aldrey JL, Liljeblad J, Hernández Nieves M et al (2009) Revision and phylogenetics of the genus Paraulax Kieffer (Hymenoptera, Cynipidae) with biological notes and description of a new tribe, a new genus and five new species. Zootaxa 2200:1–40Google Scholar
  85. Nyman T (2000) Phylogeny and ecological evolution of gall-inducing sawflies (Hymenoptera: Tenthredinidae). PhD dissertations in Biology, no 6, University of Joensuu. ISSN 1457–2486Google Scholar
  86. Peterson KR, Pfister DH, Bell CD (2010) Cophylogeny and biogeography of the fungal parasite Cyttaria and its host Nothofagus, southern beech. Mycologia 102(6):1417–1425PubMedGoogle Scholar
  87. Philippi RA (1873) Chilenische insekten. Ent Zig Stettin 34:296–316, gallen des Colliguai and gallen des RomeroGoogle Scholar
  88. Porter CE (1920a) Notas hemipterológicas. An Zool Apl Santiago 7:16Google Scholar
  89. Porter CE (1920b) Descripción de un nuevo coccido chileno. An Zool Apl Santiago 7:33–34Google Scholar
  90. Porter CE (1930) Nota acerca de un díptero chileno productor de agallas. Rev Chil Hist Nat Valparaiso 33:212–214Google Scholar
  91. Price P, Fernandes GW, Waring GL (1987) Adaptive nature of insect galls. Environ Entomol 16:15–24Google Scholar
  92. Price P, Fernandes GW, Lara ACF et al (1998) Global patterns in local number of insects galling species. J Biogeogr 25:581–591Google Scholar
  93. Pujade-Villar J, Díaz NB (2001) Cinípidos galígenos introducidos en America del Sur (Hymenoptera: Cynipoidea: Cynipidae). Rev Soc Entomol Argent 60:209–214Google Scholar
  94. Ravenna P (2000) Nothofagus rutila sp. nov., and the correct author citation of N. nervosa (Fagaceae). Onira 4(1):1–4Google Scholar
  95. Ribeiro SP, Basset Y (2007) Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: the importance of leaf sclerophylly. Ecography 30:663–672Google Scholar
  96. Rodríguez R, Quezada M (2003) Nothofagus Blume. In: Marticorena CR, Rodriguez R (eds) Flora de Chile. Vol 2 (2). Berberidaceae-Betulaceae. Universidad de Concepción, Concepción, pp 64–75Google Scholar
  97. Ronquist F (1999) Phylogeny, classification and evolution of the Cynipoidea. Zool Scr 28:139–164Google Scholar
  98. Ronquist F, Nieves-Aldrey JL (2001) A new subfamily of Figitidae (Hymenoptera, Cynipoidea). Zool J Linn Soc 133:483–494Google Scholar
  99. Rübsaamen EH (1902) Pteromalidem. In: Friederischen L et al (ed) Hamburger Magalhansische Sammelreise. Hamburg, pp 1–7Google Scholar
  100. Sandoval A, Beeche M (2010) Insectos asociados a los bosques de Nothofagus rutila Ravenna en el Cerro el Roble. Ministerio de Agricultura de Chile, Servicio Agrícola y GanaderoGoogle Scholar
  101. Santos de Araújo W (2011) Can host plant richness be used as a surrogate for galling insect diversity? Trop Conserv Sci 4(4):420–427Google Scholar
  102. Santos JC, Silveira FAO, Fernandes GW (2008) Long term oviposition preference and larval performance of Schizomyia macrocapillata (Diptera: Cecidomyiidae) on larger shoots of its host plant Bauhinia brevipes (Fabaceae). Evol Ecol 22:123–137Google Scholar
  103. Sinclair RJ, Hughes L (2010) Leaf miners: the hidden herbivores. Austral Ecol 35:300–313Google Scholar
  104. Stone GN, Hernandez-Lopez A, Nicholls JA et al (2009) Extreme host plant conservatism during at least 20 million years of host plant pursuit by oak gallwasps. Evolution 63(4):854–869PubMedGoogle Scholar
  105. Stuardo C (1930) Observaciones sobre las agallas blancas de Baccharis rosmarinifolia Hook., y el diptero que las produce. Rev Chil Hist Nat 33:345–350Google Scholar
  106. Swenson U, Hill RS, McLoughlin S (2000) Ancestral area analysis of Nothofagus (Nothofagaceae) and its congruence with the fossil record. Aust Syst Bot 13:469–478Google Scholar
  107. Trotter A (1902) Descrizione di alcune galle dell’America del Sud. B Soc Bot Ital 98–107Google Scholar
  108. Vergara O, Jerez V (2010) Insectos e infestaciones asociadas al follaje de Nothofagus antárctica (Forst) Oerst (Nothofagaceae) en la cuenca del río Baker, Región de Aysén, Chile. Gayana 74(2):83–93Google Scholar
  109. Viana LR, Silveira FAO, Santos JC et al (2013) Nematode-induced galls in Miconia albicans: effect of host plant density and correlations with performance. Plant Species Biol 28:63–69Google Scholar
  110. Villagrán C, Hinojosa LF (1997) Historia de los bosques del sur de Sudamérica, II: Análisis fitogeográfico. Rev Chil Hist Nat 70:241–267Google Scholar
  111. Waring GL, Price PW (1990) Plant water stress and gall formation (Cecidomyiidae: Asphondylia spp.) on creosote bush. Ecol Entomol 15:87–95Google Scholar
  112. Zuur AF, Ieno EN, Walker NJ et al (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Carolina Quintero
    • 1
  • Lucas A. Garibaldi
    • 1
    • 2
  • Audrey Grez
    • 3
  • Carlo Polidori
    • 4
  • José Luis Nieves-Aldrey
    • 4
  1. 1.Laboratorio Ecotono, CONICET–INIBIOMAUniversidad Nacional del ComahueSan Carlos de BarilocheArgentina
  2. 2.Sede AndinaUniversidad Nacional de Río Negro (UNRN) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)San Carlos de BarilocheArgentina
  3. 3.Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y PecuariasUniversidad de ChileLa PintanaChile
  4. 4.Departamento de Biodiversidad y Biología EvolutivaMuseo Nacional de Ciencias Naturales (CSIC)MadridSpain

Personalised recommendations