Baccharis: A Neotropical Model System to Study Insect Plant Interactions

  • Geraldo Wilson Fernandes
  • Jhonathan O. Silva
  • Mário M. Espírito-Santo
  • Marcílio Fagundes
  • Yumi Oki
  • Marco Antônio A. Carneiro


The genus Baccharis is composed of ca. 500 species which are distributed primarily in tropical America. It is dioecious and highly diverse in chemistry, architecture, phenology and occupy many different niches across several gradients of light, temperature, humidity, altitude and succession. It is host to the most speciose galling fauna, with more than 121 galling species on 40 host plant. This system provides an ideal scenario to test several ecological hypotheses, including the long standing plant sexual differences on timing and intensity of energy allocation, vigor, architecture and herbivore attack. Moreover its wide distribution enables to test latitudinal and altitudinal gradients on gall attack. We review the studies performed on these Neotropical shrubs related to galling insects. These studies have been crucial for the establishment of generalities and testing of ecological and evolutionary theories across the Americas, as well as to generate new ideas and hypotheses. For these reasons and power of the field and experimental observations we suggest that the galling insects on their Baccharis hosts may represent a Neotropical model system for studies on insect plant interactions.


Asteraceae Component community Diversity Ecological patterns Host distribution Host specificity Insect galls Insect-plant interactions Mechanisms Model ecosystems Plant-animal interactions Richness Super-host 


  1. Abad MJ, Bermejo P (2007) Baccharis (Compositae): a review update. Arkivoc 7:76–96Google Scholar
  2. Abrahamson WG, Weis AE (1997) Evolutionary ecology across three trophic levels: goldenrods, gallmakers and natural enemies. Princeton University, PrincetonGoogle Scholar
  3. Agostini F, Santos ACA, Rossato M, Pansera MR, Zattera F, Wasum R, Serafini LA (2005) Studies on the essential oils from several Baccharis (Asteraceae) from Southern Brazil. Rev Bras Farmacogn 15:215–219CrossRefGoogle Scholar
  4. Ågren J (1987) Intersexual differences in phenology and damage by herbivores and pathogens in dioecious Rubus chamaemorus L. Oecologia 72:161–169CrossRefGoogle Scholar
  5. Araújo AM, Fernandes GW, Bedê LC (1995) Influência do sexo e fenologia de Baccharis dracunculifolia DC. (Asteraceae) sobre insetos herbívoros. Rev Bras Entomol 39:347–353Google Scholar
  6. Araújo APA, Carneiro MAA, Fernandes GW (2003) Efeitos do sexo, do vigor e do tamanho da planta hospedeira sobre a distribuição de insetos indutores de galhas em Baccharis pseudomyriocephala Teodoro (Asteraceae). Rev Bras Entomol 47:483–490CrossRefGoogle Scholar
  7. Araújo APA, Paula JD, Carneiro MAA, Schoereder JH (2006) Effects of host plant architecture on colonization by galling insects. Austral Ecol 31:343–348CrossRefGoogle Scholar
  8. Argandoña VH, Faini F (1993) Oleanolic acid content in Baccharis linearis and its effects on Heliothis zea larvae. Phytochemistry 33:1377–1379CrossRefGoogle Scholar
  9. Askew RR (1960) The biology of the British species of the genus Olnx Föster (Hymenoptera: Eulophidae), with a note on seasonal colour forms in the Chalcidoidea. Proc R Entomol Soc Lond 36:103–112Google Scholar
  10. Banskota AH, Tezuka Y, Kadota S (2001) Recent progress in pharmacological research of propolis. Phytother Res 15:561–571PubMedCrossRefGoogle Scholar
  11. Barroso GM (1976) Compositae-subtribo Baccharidinae-Hoffman: estudo das espécies ocorrentes no Brasil. Rodriguesia 40:3–273Google Scholar
  12. Blanche KR (2000) Diversity of insect-induced galls along a temperature–rainfall gradient in the tropical Savannah region of the Northern Territory, Australia. Austral Ecol 25:311–318CrossRefGoogle Scholar
  13. Boecklen WJ, Hoffman MT (1993) Sex-biased herbivory in Ephedra trifurca: the importance of sex-by environment interactions. Oecologia 96:49–55CrossRefGoogle Scholar
  14. Boecklen WJ, Price PW, Mopper S (1990) Sex and drugs and herbivores: sex-biased herbivory in arroyo willow (Salix lasiolepis). Ecology 71:581–588CrossRefGoogle Scholar
  15. Boecklen WJ, Mopper S, Price PW (1994) Sex-biased herbivory in arroyo willow: are there general patterns among herbivores? Oikos 71:267–272CrossRefGoogle Scholar
  16. Boldt PE (1989) Baccharis (Asteraceae), a review of its taxonomy, phytochemistry, ecology, economic status, natural enemies and the potential for its biological control in the United States. USDA, Agricultural Research Service. Grassland, Soil and Water Research Laboratory, TempleGoogle Scholar
  17. Burckhardt D, Espírito-Santo MM, Fernandes GW, Malenovský I (2004) Gall-inducing jumping plant-lice of the Neotropical genus Baccharopelma (Hemiptera, Psylloidea) associated with Baccharis (Asteraceae). J Nat Hist 38:2051–2071CrossRefGoogle Scholar
  18. Carneiro MAA, Fernandes GW, De Souza OFF (2005) Convergence in the variation of local and regional galling species richness. Neotrop Entomol 34:547–553CrossRefGoogle Scholar
  19. Carneiro MAA, Fernandes GW, De Souza OFF, Souza WVM (2006) Sex-mediated herbivory by galling insects on Baccharis concinna (Asteraceae). Rev Bras Entomol 50:394–398CrossRefGoogle Scholar
  20. Carneiro MAA, Branco CSA, Braga CED, Almada ED, Costa MBM, Maia VC, Fernandes GW (2009a) Are gall midge species (Diptera, Cecidomyiidae) host-plant specialists? Rev Bras Entomol 53:365–378Google Scholar
  21. Carneiro MAA, Borges RAX, Araújo APA, Fernandes GW (2009b) Insetos indutores de galhas da porção sul da Cadeia do Espinhaço, MG. Rev Bras Entomol 53:570–592CrossRefGoogle Scholar
  22. Chan GC, Cheung K, Sze DM (2012) The immuno modulatory and anticancer properties of propolis. Clin Rev Allergy Immunol. doi: 10.1007/s12016-012-8322-2 Google Scholar
  23. Coelho MS, Almada ED, Fernandes GW, Carneiro MAA, Santos RM, Sánchez-Azofeifa A (2009) Gall inducing arthropods from a seasonally dry tropical forest in Serra do Cipó, Brazil. Rev Bras Entomol 53:404–414CrossRefGoogle Scholar
  24. Collevatti RG, Sperber CF (1997) The gall maker Neopelma baccharidis Burck. (Homoptera: Psyllidae) on Baccharis dracunculifolia DC. (Asteraceae): individual, local, and regional patterns. Ann Soc Entomol Brasil 26:45–53CrossRefGoogle Scholar
  25. Cornelissen T, Stiling P (2005) Sex-biased herbivory: a meta-analysis of the effects of gender on plant-herbivore interactions. Oikos 111:488–500CrossRefGoogle Scholar
  26. Cornell HV (1983) The secondary chemistry and complex morphology of galls formed by the Cynipidae (Hymenoptera): why and how? Am Midl Nat 136:581–597CrossRefGoogle Scholar
  27. Costa FV, Fagundes MF, Neves FS (2010) Arquitetura da planta e diversidade de galhas associadas à Copaifera langsdorffii (Fabaceae). Ecol Aust 20:9–17Google Scholar
  28. Costa FV, Neves FS, Silva JO, Fagundes M (2011) Relationship between plant development, tannin concentration and insects associated with Copaifera langsdorffii (Fabaceae). Arthropod Plant Interact 5:9–18CrossRefGoogle Scholar
  29. Cox CB, Moore PD (1993) Biogeography: an ecological and evolutionary approach. Blackwell, BerlinGoogle Scholar
  30. Craig TP, Horner JD, Itami JK (1997) Hybridization studies on the host races of Eurosta solidaginis: implications for sympatric speciation. Evolution 51:1552–1560CrossRefGoogle Scholar
  31. Danell K, Elmqvist T, Ericson L, Salomonson A (1985) Sexuality in willows and preference by bark-eating voles, defence or not? Oikos 44:82–90CrossRefGoogle Scholar
  32. Danell K, Hjältén J, Ericson L, Elmqvist T (1991) Vole feeding on male and female willow shoots along a gradient of plant productivity. Oikos 62:145–152CrossRefGoogle Scholar
  33. Elmqvist T, Cates RG, Harper JK, Garfjell H (1991) Flowering in males and females of a Utah willow, Salix rigida and effects on growth, tannins, phenolic glycosides and sugars. Oikos 61:65–72CrossRefGoogle Scholar
  34. Espírito-Santo MM, Fernandes GW (1998) Abundance of Neopelma baccharidis (Homoptera: Psyllidae) galls on the dioecious shrub Baccharis dracunculifolia (Asteraceae). Environ Entomol 27:870–876Google Scholar
  35. Espírito-Santo MM, Fernandes GW (2002) Host plant effects on the development and survivorship of the galling insect Neopelma baccharidis (Homoptera: Psyllidae). Aust Ecol 27:249–257CrossRefGoogle Scholar
  36. Espírito-Santo MM, Fernandes GW, Allain LR, Reis TRF (1999) Tannins in Baccharis dracunculifolia (Asteraceae): effects of seasonality, water availability and plant sex. Acta Bot Bras 13:167–174Google Scholar
  37. Espírito-Santo MM, Madeira BG, Neves FS, Faria ML, Fagundes M, Fernandes GW (2003) Sexual differences in reproductive phenology and their consequences for the demography of Baccharis dracunculifolia (Asteraceae), a dioecious tropical shrub. Ann Bot 91:13–19PubMedCrossRefGoogle Scholar
  38. Espírito-Santo MM, Faria ML, Fernandes GW (2004) Parasitoid attack and its consequences to the development of the galling psyllid Baccharopelma dracunculifoliae. Basic Appl Ecol 5:475–484CrossRefGoogle Scholar
  39. Espírito-Santo MM, Neves FS, Andrade-Neto FR, Fernandes GW (2007) Plant architecture and meristem dynamics as the mechanism determining the diversity of gall-inducing insects. Oecologia 153:353–364PubMedCrossRefGoogle Scholar
  40. Espírito-Santo MM, Neves FS, Fernandes GW, Silva JO (2012) Plant phenology and absence of sex-biased gall attack on three species of Baccharis. Plos ONE 7(10):e46896. doi: 10.1371/journal.pone.0046896 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Fagundes M, Fernandes GW (2011) Insect herbivores associated with Baccharis dracunculifolia (Asteraceae): responses of gall-forming and free-feeding insects to latitudinal variation. Rev Biol Trop 59:1419–1432PubMedGoogle Scholar
  42. Fagundes M, Faria ML, Fernandes GW (2001) Efeitos da distribuição de Baccharis dracunculifolia (Asteraceae) na abundância e no parasitismo de galhas de Neopelma baccharidis (Homoptera: Psyllidae). Unimontes Cientific 1:1–7Google Scholar
  43. Fagundes M, Neves FS, Fernandes GW (2005) Direct and indirect interactions involving ants, insect herbivores, parasitoids, and the host plant Baccharis dracunculifolia (Asteraceae). Ecol Entomol 30:28–35CrossRefGoogle Scholar
  44. Faria ML, Fernandes GW (2001) Vigour of a dioecious shrub and attack by a galling herbivore. Ecol Entomol 26:36–45CrossRefGoogle Scholar
  45. Felt EP (1940) Plant galls and gall makers. Comstock, IthacaGoogle Scholar
  46. Fernandes GW (1990) Hypersensitivity: a neglected plant resistance mechanism against insect herbivores. Environ Entomol 19:1173–1182Google Scholar
  47. Fernandes GW (1992) Plant family size and age effects on insular gall-forming species richness. Glob Ecol Biogeogr Letts 2:71–74CrossRefGoogle Scholar
  48. Fernandes GW, Lara ACF (1993) Diversity of Indonesian gall-forming herbivores along altitudinal gradients. Biodivers Letts 1:186–192CrossRefGoogle Scholar
  49. Fernandes GW, Price PW (1988) Biogeographical gradients in galling species richness: tests of hypotheses. Oecologia 76:161–167CrossRefGoogle Scholar
  50. Fernandes GW, Price PW (1991) Comparison of tropical and temperate galling species richness: the role of environmental harshness and plant nutrient status. In: Price PW, Lewinsohn T, Fernandes GW, Benson WW (eds) Plant–animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 91–115Google Scholar
  51. Fernandes GW, Price PW (1992) The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitat. Oecologia 90:14–20CrossRefGoogle Scholar
  52. Fernandes GW, Tameirão-Neto E, Martins RP (1988) Occorrência e caracterização de galhas entomógenas na vegetação do Campus-Pampulha, UFMG, Belo Horizonte – MG. Rev Bras Zool 5:11–29CrossRefGoogle Scholar
  53. Fernandes GW, Carneiro MAA, Lara ACF, Allain LA, Andrade GI, Julião G, Reis TC, Silva IM (1996) Galling insects on neotropical species of Baccharis (Asteraceae). Trop Zool 9:315–332CrossRefGoogle Scholar
  54. Fernandes GW, Araújo RC, Araújo SC, Lombardi JA, Paula AS, Loyola R, Cornelissen TG (1997) Insect galls from Jequitinhonha Valley, Minas Gerais, Brazil. Naturalia 22:221–224Google Scholar
  55. Fernandes GW, Saraiva C, Cornelissen TG, Price PW (2000) Diversity and morphology of insect galls on Chrysothamnus nauseous (Asteraceae) in North Arizona. Bios 8:39–48Google Scholar
  56. Ferracini VL, Paraiba LC, Leitão-Filho HF, Silva AGD, Nascimento LR, Marsaioli AJ (1995) Essential oils of seven Brazilian Baccharis species. J Essent Oil Res 7:355–367CrossRefGoogle Scholar
  57. Floate KD, Whitham TG (1995) Insects as traits in plant systematics: their use in discriminating between hybrid cottonwoods. Can J Bot 73:1–13CrossRefGoogle Scholar
  58. Floate KD, Fernandes GW, Nilsson JA (1996) Distinguishing intrapopulational categories of plants by their insect faunas: galls on rabbit brush. Oecologia 105:221–229Google Scholar
  59. Gehring CA, Whitham TG (1992) Reduced mycorrhizae on Juniperus monosperma with mistletoe: the influence of environmental stress and tree gender on a plant parasite and a plant–fungal mutualism. Oecologia 89:298–303Google Scholar
  60. Gomes V, Fernandes GW (2002) Germinação de aquênios de Baccharis dracunculifolia D. C. (Asteraceae). Acta Bot Bras 16:421–427CrossRefGoogle Scholar
  61. Hartley SE, Lawton JH (1992) Host-plant manipulation by gall-insects: a test of the nutrition hypothesis. J Anim Ecol 61:113–119CrossRefGoogle Scholar
  62. Hawkins BA, Compton SG (1992) African fig wasp communities: undersaturation and latitudinal gradients in species richness. J Anim Ecol 61:361–372CrossRefGoogle Scholar
  63. Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335CrossRefGoogle Scholar
  64. Hjältén J (1992) Plant sex and hare feeding preferences. Oecologia 89:253–256Google Scholar
  65. Inbar M, Izhaki I, Koplovich A, Lupo I, Silanikove N, Glasser T, Gerchman Y, Perevolotsky A, Lev-Yadun A (2010) Why do many galls have conspicuous colors? A new hypothesis. Arthropod Plant Interact 4:1–6CrossRefGoogle Scholar
  66. Jarvis BB, Midiwo JO, Bean GA, Abdoul-Nasr MB, Barras CS (1988) The mystery of trichothecene antibiotics in Baccharis species. J Nat Prod 51:736–744PubMedCrossRefGoogle Scholar
  67. Jarvis BB, Mokhtari-Rejali N, Schenkel EP, Barros CS, Matzenbacher NI (1991) Tricothecene mycotoxins from Brazilian Baccharis species. Phytochemistry 30:789–797CrossRefGoogle Scholar
  68. Julião GR, Amaral MEC, Fernandes GW (2002) Galhas de insetos e suas plantas hospedeiras do Pantanal sul-mato-grossense. Naturalia 27:47–74Google Scholar
  69. Kumazawa S, Yoneda M, Shibata I, Kanaeda J, Hamasaka T, Nakayama T (2003) Direct evidence for the plant origin of Brazilian propolis by the observation of honeybee behavior and phytochemical analysis. Chem Pharm Bull 51:740–742PubMedCrossRefGoogle Scholar
  70. Lara ACF, Fernandes GW (1996) The highest diversity of galling insects: Serra do Cipó, Brazil. Biodivers Letts 3:111–114CrossRefGoogle Scholar
  71. Lawton JH (1983) Plant architecture and the diversity of phytophagous insects. Annu Rev Entomol 28:23–29CrossRefGoogle Scholar
  72. Lee JA (1981) Variation in the infection of Silene dioica (L.) by Ustilago violacea (Pers) in Northwest England. New Phytol 87:81–89CrossRefGoogle Scholar
  73. Madeira BG, Cornelissen TG, Faria ML, Fernandes GW (1997) Insect herbivore preference for sex and modules in Baccharis concinna (Asteraceae). In: Raman A (ed) Ecology and evolution of plant-feeding insects in natural and man-made environments. International Scientific Publications, New Delhi, pp 135–145Google Scholar
  74. Maia VC (2011) Characterization of insect galls, gall makers, and associated fauna of Platô Bacaba (Porto de Trombetas, Pará, Brazil). Biota Neotrop 4. Available online at: 400003&script=sci_arttext. Accessed August 2012
  75. Mani MS (1964) The ecology of plant galls. Junk, The HagueCrossRefGoogle Scholar
  76. Mani MS (1992) Introduction to cecidology. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, Oxford, pp 3–7Google Scholar
  77. Manos PS, Doyle JJ, Nixon KC (1999) Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol Phylogenet Evol 12:333–349PubMedCrossRefGoogle Scholar
  78. Marquis RJ, Lill JT, Piccini A (2002) Effect of plant architecture on colonization and damage by leaftying caterpillars of Quercus alba. Oikos 99:531–537CrossRefGoogle Scholar
  79. Nesom G (1988) Baccharis monoica (Compositae: Asteraceae), a monoecious species of the B. salicifolia complex from Mexico and Central America. Phytologia 65:160–164Google Scholar
  80. Price PW (1991) The plant vigor hypothesis and herbivore attack. Oikos 62:244–251CrossRefGoogle Scholar
  81. Price PW, Craig TP, Roininen H (1995) Working toward theory on galling sawfly population dynamics. In: Cappuccino N, Price PW (eds) Population dynamics: new approaches and synthesis. Academic, San Diego, pp 321–338CrossRefGoogle Scholar
  82. Price PW, Fernandes GW, Floate RD (1996) Gall-inducing insect herbivores in multitrophic systems. In: Gange A, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell, England, pp 239–255Google Scholar
  83. Ribeiro-Mendes HN, Marques ESA, Silva IM, Fernandes GW (2002) Influence of host-plant sex and habitat on survivorship of insect galls within the geographical range of the host plant. Trop Zool 15:5–15CrossRefGoogle Scholar
  84. Rohfritsch O (1992) Patterns in gall development. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, Oxford, pp 60–86Google Scholar
  85. Safford HD (1999) Brazilian páramos I. An introduction to the physical environment and vegetation of the campos de altitude. J Biogeogr 26:693–712CrossRefGoogle Scholar
  86. Santos JC, Almeida-Cortez JS, Fernandes GW (2011) Richness of gall-inducing insects in the tropical dry forest (Caatinga) of Pernambuco. Rev Bras Entomol 55:45–54CrossRefGoogle Scholar
  87. Shorthouse JD, Rohfritsch O (1992) Biology of insect-induced galls. Oxford University, New YorkGoogle Scholar
  88. Steeves TA, Sussex IM (1989) Patterns in plant development. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  89. Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512–522CrossRefGoogle Scholar
  90. Stone GN, Schönrogge K, Atkinson RJ, Bellido D, Pujade-Villar J (2002) The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annu Rev Entomol 47:633–668PubMedCrossRefGoogle Scholar
  91. Sussex IA, Kerk NM (2001) The evolution of plant architecture. Curr Opin Plant Biol 4:33–37PubMedCrossRefGoogle Scholar
  92. Teixeira EW, Negri G, Meira RM, Message D, Salatino A (2005) Plant origin of green propolis: bee behavior, plant anatomy and chemistry. Evid Based Complement Alternat Med 2:85–92PubMedCentralPubMedCrossRefGoogle Scholar
  93. Varga S, Kytöviita MM (2008) Sex-specific responses to mycorrhiza in a dioecious species. Am J Bot 95:1225–1232PubMedCrossRefGoogle Scholar
  94. Veldtman R, McGeoch MA (2003) Gall-forming insect species richness along a non-scleromorphic vegetation rainfall gradient in South Africa: the importance of plant community composition. Aust Ecol 28:1–13CrossRefGoogle Scholar
  95. Verdi LG, Brighente MC, Pizzolatti MG (2005) Gênero Baccharis (Asteraceae): Aspectos químicos, econômicos biológicos. Quim Nova 28:85–94CrossRefGoogle Scholar
  96. Waring GL, Price PW (1990) Plant water stress and gall formation (Cecidomyiidae: Asphondylia spp.) on creosote bush. Ecol Entomol 15:87–95CrossRefGoogle Scholar
  97. Weis AE, Walton R, Greco CL (1988) Reactive plant tissue sites and the population biology of gall makers. Annu Rev Entomol 33:467–486CrossRefGoogle Scholar
  98. Wollenweber E, Valantvetschera KM, Fernandes GW (2006) Chemodiversity of exudate flavonoids in Baccharis concinna and three further South-American Baccharis species. Nat Prod Commun 1:627–632Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Geraldo Wilson Fernandes
    • 1
  • Jhonathan O. Silva
    • 2
  • Mário M. Espírito-Santo
    • 3
  • Marcílio Fagundes
    • 3
  • Yumi Oki
    • 4
  • Marco Antônio A. Carneiro
    • 5
  1. 1.Ecologia Evolutiva & Biodiversidade/DBGICB/Universidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de EcologiaUniversidade de Brasília (UnB)BrasíliaBrazil
  3. 3.Departamento de Biologia GeralUniversidade Estadual de Montes ClarosMontes ClarosBrazil
  4. 4.Ecologia Evolutiva & Biodiversidade/DBGUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil
  5. 5.Instituto de Ciências Exatas e BiológicasUniversidade Federal de Ouro Preto (UFOP)Ouro PretoBrazil

Personalised recommendations