Advertisement

Neotropical Insect Galls: Status of Knowledge and Perspectives

  • Geraldo Wilson Fernandes
  • Marcel S. Coelho
  • Jean Carlos Santos
Chapter

Abstract

This book seeks to expose the reader to those studies which have made the greatest contribution to the body of knowledge surrounding the insect galls in the Neotropical region. There seems to be countless groups of researchers working both in Brazil and in other tropical regions of the Americas. The chapters presented here report the diversity of studies conducted to date as well as indicate the quality of the studies in progress.

Keywords

Biogeography Insect galls Richness hypothesis Neotropical region 

References

  1. Almada ED, Fernandes GW (2011) Insetos indutores de galhas em florestas de terra firme e em reflorestamentos com espécies nativas na Amazônia Oriental. Bolm Mus Para Emílio Goeldi (Cienc Nat) 6:1–10Google Scholar
  2. Almeida AM, Prado PI, Lewinsohn T (2004) Geographical distribution of Eupatorieae (Asteraceae) in south-eastern and south Brazilian mountain ranges. Plant Ecol 174:163–181Google Scholar
  3. Andrade GI, Ivoneide MS, Fernandes GW, Scatena VL (1995) Aspectos biológicos das galhas de Tomoplagia rudolphi (DípteraDiptera: Tephritidae) em Vernonia polyanthes (Asteraceae). Rev Bras Biol 55:819–829Google Scholar
  4. Araújo WS (2013) Different relationships between galling and non-galling herbivore richness and plant species richness: a meta-analysis. Arthropod Plant Interact. doi: 10.1007/s11829-013-9259-y Google Scholar
  5. Araújo APA, Paula JD, Carneiro MAA, Schoereder JH (2006) Effects of host plant architecture on colonization by galling insects. Aust Ecol 31:343–348Google Scholar
  6. Blanche KR (2000) Diversity of insect-induced galls along a temperature-rainfall gradient in the tropical savannah region of the Northern Territory, Australia. Aust Ecol 25:311–318Google Scholar
  7. Blanche KR, Ludwig JA (2001) Species richness of gall-inducing insects and host plants along altitudinal gradient in Big Bend National Park, Texas. Am Midl Nat 145:219–232Google Scholar
  8. Blanche KR, Westoby M (1995) Gall forming insect diversity is linked to soil fertility via host plant taxon. Ecology 76:2334–2337Google Scholar
  9. Campos PT, Costa MCD, Isaias RMS, Moreira ASFP, Oliveira DC, Lemos-Filho JP (2010) Phenological relationships between two insect galls and their host plants: Aspidosperma australe and A. spruceanum (Apocynaceae). Acta Bot Bras 24:727–733Google Scholar
  10. Carneiro MAA, Fernandes GW, DeSouza OFF (2005) Convergence in the variation of local and regional galling species richness. Neotrop Entomol 34:547–553Google Scholar
  11. Carneiro MAA, Borges RAX, Araújo APA, Fernandes GW (2009a) Insetos indutores de galhas da porção sul da Cadeia do Espinhaço, MG. Rev Bras Entomol 53:570–592Google Scholar
  12. Carneiro MAA, Branco CSA, Braga CED, Almada ED, Costa MBM, Fernandes GW, Maia VC (2009b) Are gall midge species (Diptera: Cecidomyiidae) host plant specialists? Rev Bras Entomol 53:365–378Google Scholar
  13. Castro ACR, Leite GLD, Oliveira DC, Isaias RMS (2012) Morphological patterns of a Hymenopteran gall on the leaflets of Caryocar brasiliense Camb. (Caryocaraceae). Am J Plant Sci 3:921–929Google Scholar
  14. Coelho MS, Almada ED, Fernandes GW, Carneiro MAA, Santos RM, Quintino AV, Sanchez-Azofeifa A (2009) Gall inducing arthropods from a seasonally dry tropical forest in Serra do Cipó, Brazil. Rev Bras Entomol 53:404–414Google Scholar
  15. Cornelissen TG, Fernandes GW (1999) Plant hypersensitivity against tissue invasive insects: Bauhinia brevipes and Cararina sp: interaction. In: Csócka Y, Price PW, Mattson WJ (eds) Biology of gall-inducing arthropods. US Department of Agriculture, Washington, DC, pp 144–152Google Scholar
  16. Cornelissen TG, Fernandes GW (2001) Patterns of attack by herbivores on the tropical shrub Bauhinia brevipes (Leguminosae): vigor or chance? Eur J Entomol 98:37–40Google Scholar
  17. Cornelissen TG, Madeira BG, Allain LR, Lara ACF, Araújo LM, Fernandes GW (1997) Multiple responses of insect herbivores to plant vigor. Ciên Cult 49:285–288Google Scholar
  18. Cornelissen T, Fernandes GW, Vasconcelos-Neto J (2008) Size does matter: variation in herbivory between and within plants and the plant vigor hypothesis. Oikos 117:1121–1130Google Scholar
  19. Cornell HV (1985) Local and regional richness of cynipinae gall wasps on California Oaks. Ecology 66:1247–1260Google Scholar
  20. Cornell HV (1993) Unsaturated patterns in species assemblages: the role of regional processes in setting local species richness. In: Ricklefs R, Schluter D (eds) Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago, pp 243–252Google Scholar
  21. Cuevas-Reyes P, Siebe C, Martínez-Ramos M, Oyama K (2003) Species richness of gall-forming insects in a tropical rain forest: correlations with plant diversity and soil fertility. Biodivers Conserv 12:411–422Google Scholar
  22. Cuevas-Reyes P, Quesada M, Hanson P, Dirzo R, Oyama K (2004a) Diversity of gall-inducing insects in a Mexican tropical dry forest: the importance of plant species richness, life-forms, host plant age and plant density. J Ecol 92:707–716Google Scholar
  23. Cuevas-Reyes P, Quesada M, Siebe C, Oyama K (2004b) Spatial patterns of herbivory by gall-forming insects: a test of the soil fertility hypothesis in a Mexican tropical dry forest. Oikos 107:181–189Google Scholar
  24. Cuevas-Reyes P, Oliveira-Ker FT, Fernandes GW, Bustamante M (2011) Abundance of gall-inducing insect species in sclerophyllous savanna: understanding the importance of soil fertility using an experimental approach. J Trop Ecol 27:631–640Google Scholar
  25. Dias GC, Ferreira BG, Moreira GRP, Isaias RMS (2013a) Contrasting developmental pathways for leaves nd galls induced by sap-feeding on Schinus polygamus (Cav.) Cabrera (Anarcadiaceae). An Acad Bras Cienc 85:187–200PubMedGoogle Scholar
  26. Dias GC, Moreira GRP, Ferreira BG, Isaias RMS (2013b) Why do the galls induced by Calophya duvauae Scott on Schinus polygamus (Cav.) Cabrera (Anacardiaceae) change colors? Biochem Syst Ecol 48:111–122Google Scholar
  27. Espírito-Santo MM, Fernandes GW (2007) How many species of gall-inducing insects are there on earth, and where are they? Ann Entomol Soc Am 100:95–99Google Scholar
  28. Espírito-Santo MM, Neves FS, Andrade-Neto FR, Fernandes GW (2007) Plant architecture and meristem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia 153:353–364PubMedGoogle Scholar
  29. Espírito-Santo MM, Neves FS, Andrade Neto FR, Silva JO, Fernandes GW (2012) Plant phenology and absence of sex-biased gall attack on three species of Bacharis. PLoS ONE 7:e46896PubMedCentralPubMedGoogle Scholar
  30. Felt EP (1908) Appendix D. N Y State Mus Bull 124:286–422Google Scholar
  31. Felt EP (1915a) New South America gall midges. Psyche 22:152–157Google Scholar
  32. Felt E (1915b) New genera and species of gall midges. Proc U S Natl Mus 48:195–211Google Scholar
  33. Fernandes GW (1990) Hypersensitivity: a neglected plant resistance mechanism against insect herbivores. Environ Entomol 19:1173–1182Google Scholar
  34. Fernandes GW (1992) Plant family size and age effects on insular gall-forming species richness. Glob Ecol Biogeogr Lett 2:71–74Google Scholar
  35. Fernandes GW (1998) Hypersensitivity as a fenotypic basis of plant induced resistance against a galling insect (Diptera: Cecidomyiidae). Environ Entomol 27:260–267Google Scholar
  36. Fernandes GW, Lara ACF (1993) Diversity of Indonesian gall-forming herbivores along altitudinal gradients. Biodivers Lett 1:186–192Google Scholar
  37. Fernandes GW, Negreiros D (2001) The occurrence and effectiveness of hypersensitive reaction against galling herbivores across host taxa. Ecol Entomol 26:46–55Google Scholar
  38. Fernandes GW, Price PW (1988) Biographical gradients in galling species richness. Test of hypotheses. Oecologia 76:161–167Google Scholar
  39. Fernandes GW, Price PW (1991) Comparison of tropical and temperate galling species richness: the roles of environmental harshness and plant nutrient status. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 91–115Google Scholar
  40. Fernandes GW, Price PW (1992) The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitats. Oecologia 90:14–20Google Scholar
  41. Fernandes GW, Lara ACF, Price PW (1994) The geography of galling insects and the mechanisms resulting in patterns. In: Price PW, Mattson WJ, Baranchikov Y (eds) Gall-forming insects: ecology, physiology and evolution. US Department of Agriculture, Washington, DC, pp 42–48Google Scholar
  42. Fernandes GW, Carneiro MAA, Lara ACF, Allain LR, Julião GR, Andrade GI, Reis TR, Silva IM (1996) Galling insects on neotropical species of Baccharis (Asteraceae). Trop Zool 9:315–332Google Scholar
  43. Fernandes GW, Cornelissen TG, Isaias RMS, Lara ACF (2000) Plants fight gall formation: hypersensitivity. Cienc Cult 52:49–54Google Scholar
  44. Fernandes GW, Julião GR, Araújo RC, Araújo SC, Lombardi JA, Negreiros D, Carneiro MAA (2001) Distribution and morphology of insect galls of the Rio Doce Valley, Brazil. Naturalia 26:211–244Google Scholar
  45. Fernandes GW, Duarte H, Lüttge U (2003) Hypersensitivity of Fagus sylvatica L. against leaf galling insects. Tree 17:407–411Google Scholar
  46. Fernandes GW, Gonçalves-Alvim SJ, Carneiro MAA (2005) Habitat-driven effects on the diversity of gall-inducing insects in the Brazilian Cerrado. In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology, and evolution of gall-inducing arthropods. Science Publishers, Enfield, pp 693–708Google Scholar
  47. Fernandes GW, Carneiro MAA, Isaias RMS (2011) Gall-inducing insects: from anatomy to biodiversity. In: Panizzi AR, Parra JRP (eds) Insect bioecology and nutrition for integrated pest management. CRC Press, Boca Raton, pp 369–395Google Scholar
  48. Ferreira AS, Fernandes GW, Carvalho LG (1990) Biologia e história natural de Euphaleurus ostreoides (Homóptera: Psyllidae) cecidógeno de Lonchocarpus guilleminianus (Leguminosae). Rev Bras Biol 50:417–423Google Scholar
  49. Floate KD, Fernandes GW, Nilsson JA (1996) Distinguishing intrapopulational categories of plants by their insect faunas: galls on rabbitbrush. Oecologia 105:221–229Google Scholar
  50. Florentine SK, Raman A, Dhileepan K (2005) Effects of gall induction by Epiblema strenuana on gas exchange, nutrients, and energetics in Parthenium hysterophorus. BioControl 50:787–801Google Scholar
  51. Fonseca CR, Benson WW (2003) Ontogenetic succession in Amazonian ant-trees. Oikos 102:407–412Google Scholar
  52. Fonseca CR, Fleck T, Fernandes GW (2006) Processes driving ontogenetic succession of galls in a canopy tree. Biotropica 38:514–521Google Scholar
  53. Formiga AT, Gonçalves SJMR, Soares GLG, Isaias RMS (2009) Relações entre o teor de fenólicos e o ciclo das galhas de Cecidomyiidae em Aspidosperma spruceanum Müell Arg. (Apocynaceae). Acta Bot Bras 23:93–99Google Scholar
  54. Formiga AT, Oliveira DC, Ferreira BG, Magalhães TA, Castro AC, Fernandes GW, Isaias RMS (2012) The role of pectic composition of cell walls in the determination of the new shape-functional design in galls of Baccharis reticularia (Asteraceae). Protoplasma 250:899–908.PubMedGoogle Scholar
  55. Gagné RJ (1994) The gall midges of the Neotropical region. Comstock, Ithaca, 352 pGoogle Scholar
  56. Gonçalves-Alvim SJ, Fernandes GW (2001) Biodiversity of galling insects: historical, community and habitat effects in four Neotropical savannas. Biodivers Conserv 10:79–98Google Scholar
  57. Hawkins BA, Compton SG (1992) African fig wasp communities: undersaturation and latitudinal gradients in species richness. J Anim Ecol 61:361–372Google Scholar
  58. Houard C (1933) Les Zoocécidies des Plantes de l ́Amérique du Sud e de l ́Amérique Central. Hermann et Cie, Paris, 519 pGoogle Scholar
  59. Julião GR, Amaral MEC, Fernandes GW (2002) Galhas de insetos e suas plantas hospedeiras no Pantanal sul-mato grossense. Naturalia 27:47–74Google Scholar
  60. Julião GR, Venticinque EM, Fernandes GW (2005) Richness and abundance of gall-forming insects in the Mamirauá Varzea, a flooded Amazonian forest. Uakari 1:39–42Google Scholar
  61. Lara ACF, Fernandes GW (1996) The highest diversity of galling insects: Serra do Cipó, Brazil. Biodivers Lett 3:111–114Google Scholar
  62. Lara ACF, Fernandes GW, Goncalves- Alvim SJ (2002) Tests of hypotheses on patterns of gall distribution along an altitudinal gradient. Trop Zool 15:219–232Google Scholar
  63. Larson KC (1998) The impact of two gall-forming arthropods on the photosynthetic rates of their hosts. Oecologia 115:161–166Google Scholar
  64. Lawton JH (1990) Local and regional species-richness of bracken-feeding insects. In: Thompson JA, Smith RT (eds) Bracken biology and management. Australian Institute of Agricultural Science Occasional Publication, Sydney, pp 197–202Google Scholar
  65. Lawton JH, Schröder D (1977) Effects of plant type, size of geographical range and taxonomic isolation on number of insect species associated with British plants. Nature 265:137–140Google Scholar
  66. Lawton JH, Lewinsohn TM, Compton SG (1993) Patterns of diversity for the insect herbivores on Bracken. In: Ricklefs R, Schluter D (eds) Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago, pp 178–184Google Scholar
  67. Maia VC (2001) The gall midges (Diptera, Cecidomyiidae) from three restingas of Rio de Janeiro State, Brazil. Rev Bras Zool 18:583–629Google Scholar
  68. Maia VC (2005) Catálogo dos Cecidomyiidae (Diptera) do estado do Rio de Janeiro. Biota Neotrop 5:1–26Google Scholar
  69. Maia VC (2012) Characterization of insect galls, gall makers, and associated fauna of Platô Bacaba (Porto de Trombetas, Pará, Brazil). Biota Neotrop 11:1–17Google Scholar
  70. Maia VC, Fernandes GW (2004) Insect galls from Serra de São José (Tiradentes, MG, Brazil. Rev Bras Biol 6:423–445Google Scholar
  71. Maia VC, Azevedo MAP, Couri MS (2002) New contribution to the knowledge of the gall midges (Diptera, Cecidomyiidae) from the restinga of Barra de Maricá (Rio de Janeiro, Brazil). Stud Dipterol 9:447–452Google Scholar
  72. Mani MS (1964) The ecology of plant galls. Dr. Junk, The Hague, 434ppGoogle Scholar
  73. Medianero E, Barrios H (2001) Riqueza de insectos cecidógenos en el dosel y sotobosque de dos zonas ecológicas en Panamá. Scientia (Panamá) 16:17–42Google Scholar
  74. Medianero E, Valderrama A, Barrios H (2003) Diversidad de insectos minadores de hojas y formadores de agallas en el dosel y sotobosque del bosque tropical. Acta Zool Mex 89:153–168Google Scholar
  75. Medianero E, Ibánez A, Nieves-Aldrey JL (2010) The importance of beta diversity in local gall-inducing arthropod distribution. Neotrop Entomol 39:365–370PubMedGoogle Scholar
  76. Mendonça MS (2001) Galling insect diversity: the resource synchronisation hypothesis. Oikos 95:171–176Google Scholar
  77. Mendonça MS (2007) Plant diversity and galling arthropod diversity searching for taxonomic patterns in an animal-plant interaction in the Neotropics. Bol Soc Argent Bot 42:347–357Google Scholar
  78. Mendonça MS (2011) Galling arthropod diversity in the subtropical Neotropics: Espinilho savannah and riparian forests compared. Rev Colomb Entomol 37:111–116Google Scholar
  79. Oliveira DC, Isaias RMS (2009) Influence of leaflet age in anatomy and possible adaptive values of the midrib gall of Copaifera langsdorffii (Fabaceae: Caesalpinioideae). Rev Biol Trop 57:293–302PubMedGoogle Scholar
  80. Oliveira DC, Isaias RMS (2010) Cytological and histochemical gradients induced by sucking insect in galls of Aspidosperma australe Arg. Muell (Apocynaceae). Plant Sci 178:350–358Google Scholar
  81. Oliveira JC, Maia VC (2005) Ocorrência e caracterização de galhas de insetos na restinga de Grumari (Rio de Janeiro, RJ, Brasil). Arq Mus Nac 63:669–675Google Scholar
  82. Price PW (1991) Patterns in communities along latitudinal gradients. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 51–70Google Scholar
  83. Price PW (1992) Evolution and ecology of gall-inducing sawflies. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 208–224Google Scholar
  84. Price PW (2005) Adaptative radiation of gall-inducing insects. Bas Appl Ecol 6:413–421Google Scholar
  85. Price PW, Waring GL, Fernandes GW (1986) Hypotheses on the adaptive nature of galls. Proc Entomol Soc Wash 88:361–363Google Scholar
  86. Price PW, Fernandes GW, Waring GL (1987) Adaptive nature of insect galls. Environ Entomol 16:15–24Google Scholar
  87. Price PW, Cobb N, Craig TP, Fernandes GW, Itami J, Mopper S, Preszler RW (1990) Insect herbivore population dynamics on trees and shrubs: new approaches relevant to latent and eruptive species and life table development. In: Bernays E (ed) Focus on insect-plant interactions, vol 2. CRC books, Boca Raton, pp 1–38Google Scholar
  88. Price PW, Fernandes GW, Lara ACF, Brawn J, Barrios H, Wright MG, Ribeiro SP, Rothcliff N (1998) Global patterns in local number of insect galling species. J Biogeogr 25:581–591Google Scholar
  89. Price PW, Denno RF, Eubanks MD, Finke DL, Kaplan I (2011) Insect ecology: behavior, populations and communities. Cambridge University Press, Cambridge, 816 pGoogle Scholar
  90. Ribeiro-Mendes HN, Marques ESA, Silva IM, Fernandes GW (2002) Influence of host-plant sex habitat on survivorship of insect galls within the geographical range of the host-plant. Trop Zool 15:5–15Google Scholar
  91. Rohfritsch O, Shorthouse JD (1982) Insect galls. In: Kahl G, Schell JS (eds) Molecular biology of plant tumors. Academic, New York, pp 131–152Google Scholar
  92. Sa CEM, Silveira FAO, Santos JC, Isaias RMS, Fernandes GW (2009) Anatomical and developmental aspects of leaf galls induced by Schizomyia macrocapillata Maia (Diptera: Cecidomyiidae) on Bauhinia brevipes Vogel (Fabaceae). Rev Bras Bot 32:319–327Google Scholar
  93. Santos JC, Silveira FAO, Fernandes GW (2007) Long term oviposition preference and larval performance of Schizomyia macrocapillata (Diptera: Cecidomyiidae) on larger shoots of its host plant Bauhinia brevipes (Fabaceae). Evol Ecol 22:123–137Google Scholar
  94. Santos JC, Almeida-Cortez JS, Fernandes GW (2011) Richness of gall-inducing insects in the tropical dry forest (caatinga) of Pernambuco. Rev Bras Entomol 55:45–54Google Scholar
  95. Santos JC, Almeida-Cortez JS, Fernandes GW (2012a) Gall-inducing insects from Atlantic forest of Pernambuco, northeastern Brazil. Biota Neotr 12:197–213Google Scholar
  96. Santos JC, Carneiro MAA, Fernandes GW (2012b) Insetos galhadores neotropicais: diversidade e ecologia evolutiva dos herbívoros mais sofisticados da natureza. In: Del Claro K, Torezan-Silingardi HM (eds) Interações Animal-Planta. Technical Books Editora, Rio de Janeiro, pp 183–199Google Scholar
  97. Santos AW, Scareli-Santos C, Guilherme FAG, Cuevas-Reyes (2013) Comparing galling insect richness among Neotropical savannas: effects of plant richness, vegetation structure and super-host presence. Biodivers Conserv 22:1083–1094Google Scholar
  98. Shorthouse JD, Wool D, Raman A (2005) Gall-inducing insects – nature’s most sophisticated herbivores. Basic Appl Ecol 6:407–411Google Scholar
  99. Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512–522Google Scholar
  100. Strong DR, Lawton JH, Southwoon R (1984) Insects on plants. Community patterns and mechanisms. Blackwell Scientific Publications, OxfordGoogle Scholar
  101. Tavares JS (1906) Descrição de uma Cecidomyia nova do Brazil, pertence a um genero novo. Brotéria 5:81–84Google Scholar
  102. Tavares JS (1915) As cecidas das plantas do gênero Styrax no Brazil. Broteria Brotéria (Ser Zool) 13:145–160Google Scholar
  103. Tavares JS (1916a) Alguns muscídeos cecidogénicos do Brazil. Brotéria (Ser Zool) 15:155–170Google Scholar
  104. Tavares JS (1916b) Cecidomyias novas do Bazil. Brotéria (Ser Zool) 14:36–57Google Scholar
  105. Tavares JS (1917a) As cecidias do Brazil que se criam nas plantas da família das Melastomataceae. Brotéria (Ser Zool) 15:18–49Google Scholar
  106. Tavares JS (1917b) Cecidas brazileiras que se criam em plantas das Compositae, Rubiaceae, Tiliaceae, Lythraceae e Artocarpaceae. Brotéria (Ser Zool) 15:113–181Google Scholar
  107. Tavares JS (1918a) Cecidologia brazileira. Cecidas que se criam em plantas das famílias das Verbenaceae, Euphorbiaceae, Malvaceae, Anarcadiaceae, Labiatae, Rosaceae, Anonaceae, Ampelidaceae, Bignoniaceae, Aristolochiaceae e Solanaceae. Brotéria (Ser Zool) 16:21–68Google Scholar
  108. Tavares JS (1918b) Cecidomyias novas do Brazil. Brotéria (Ser Zool) 16:69–84Google Scholar
  109. Tavares JS (1920a) Cecidologia brazileira. Cecidas que se criam em plantas das famílias das Leguminosae, Sapotaceae, Lauraceae, Myrtaceae, Punicaceae, Aurantiaceae, Malpighiaceae, Sapindaceae, Umbelliferae, Loranthaceae, Apocynaceae, Urticaceae, Salicaceae e Graminae. Brotéria (Ser Zool) 18:82–125Google Scholar
  110. Tavares JS (1920b) O gênero Bruggmanniella Tav. com descripção de uma espécie nova e a clave dichotômica dos gêneros das Asphondyliariae. Brotéria (Ser Zool) 18:33–42Google Scholar
  111. Tavares JS (1921) Cecidologia brazileira. Cecidias que se criam em plantas das famílias das Leguminosae, Sapotaceae, Lauraceae, Punicaceae, Aurantiaceae, Malpighiaceae, Sapindaceae, umbelliferae, Loranthaceae, Apocynaceae, Urticaceae, Salicaceae e Graminae. Brotéria (Ser Zool) 19:76–112Google Scholar
  112. Tavares JS (1922) Cecidologia brazileira. As restantes famílias. Brotéria (Ser Zool) 20:5–48Google Scholar
  113. Tavares JS (1925) Nova contribuição para o conhecimento da Cecidologia Brazileira. Brotéria (Ser Zool) 22:5–55Google Scholar
  114. Veldtman R, Mcgeoch MA (2003) Gall-forming insect species richness along a nonscleromorphic vegetation rainfall gradient in South Africa: the importance of plant community composition. Austral Ecol 28:1–13Google Scholar
  115. Waring GL, Price PW (1990) Plant water stress and gall formation (Cecidomyiidae: Asphondylia spp.) on creosote bush. Ecol Entomol 15:87–95Google Scholar
  116. White TCR (1969) An index to measure weather-induced stress of trees associated with outbreaks of psyllids in Australia. Ecology 50:905–909Google Scholar
  117. Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale and synthesis. Annu Rev Ecol Evol Syst 34:271–309Google Scholar
  118. Wright MG, Samways MJ (1996) Gall insect species richness in African Fynbos and Karoo vegetation: the importance of plant species richness. Biodivers Lett 3:151–155Google Scholar
  119. Wright MG, Samways MJ (1998) Insect species richness tracking plant species richness in a diverse flora: gall-insect in the Cape Floristic Region, South Africa. Oecologia 115:427–433Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Geraldo Wilson Fernandes
    • 1
  • Marcel S. Coelho
    • 1
  • Jean Carlos Santos
    • 2
  1. 1.Ecologia Evolutiva & Biodiversidade/DBGICB/Universidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Instituto de BiologiaUniversidade Federal de UberlândiaUberlândiaBrazil

Personalised recommendations