Henri Poincaré: The Status of Mechanical Explanations and the Foundations of Statistical Mechanics

  • João Príncipe
Part of the The Western Ontario Series in Philosophy of Science book series (WONS, volume 79)


The first goal of this paper is to show the evolution of Poincaré ’s opinion on the mechanistic reduction of the principles of thermodynamics , placing it in the context of the science of his time. The second is to present some of his work in 1890 on the foundations of statistical mechanics . He became interested first in thermodynamics and its relation with mechanics, drawing on the work of Helmholtz on monocyclic systems. After a period of skepticism concerning the kinetic theory, he read some of Maxwell ’s memories and contributed to the foundations of statistical mechanics. I also show that Poincaré’s contributions to the foundations of statistical mechanics are closely linked to his work in celestial mechanics and its interest in probability theory and its role in physics.


Statistical Mechanic Kinetic Theory Celestial Mechanic Canonical Equation Probability Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ampère, A.M. 1835. Note de M Ampère sur la Chaleur et sur la Lumière considérées comme résultant de mouvements vibratoires. Annales de chimie et de physique 58: 432–444.Google Scholar
  2. Arnold, V.I. 1978. Mathematical methods of classical mechanics, 2nd ed.: 1989. Berlin: Springer-Verlag.Google Scholar
  3. Barberousse, A. 2000. La Physique face à la probabilité. Paris: Vrin.Google Scholar
  4. Barberousse, A. 2002. La Mécanique statistique de Clausius à Gibbs. Paris: Berlin.Google Scholar
  5. Barrow-Green, J. 1997. Poincaré and the three-body problem. New York/London: The American Mathematical Society/The London Mathematical Society.Google Scholar
  6. Bierhalter, G. 1993. Helmholtz’s mechanical foundation of thermodynamics. In Cahan 1993, 432–458.Google Scholar
  7. Boltzmann, L. 1866. Über die mechanische Bedeutung des zweiten Haupsatzes der Wärmetheorie, Kaiserliche Akademie der Wissenschaften zu Wien, matematisch-naturwissenschafliche Klasse. Sitzungsberichte 53(2): 195–220; also in Boltzmann 1909, 1: 9–33.Google Scholar
  8. Boltzmann, L. 1868. Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten, Kaiserliche Akademie der Wissenschaften zu Wien, matematisch-naturwissenschafliche Klasse. Sitzungsberichte 58: 517–560.Google Scholar
  9. Boltzmann, L. 1896a. Vorlesungen über Gastheorie I. Theil. Leipzig: Barth.Google Scholar
  10. Boltzmann, L. 1896b. Zu Hrn Zermelo’s Abhandlung über die mechanische Erklärung irreversibler Vorgänge. Annalen der physik 60: 392–398. English translation: Brush 1966, §8.Google Scholar
  11. Boltzmann, L. 1896c. Entgegnung auf die wärmetheoretischen Betrachtungen des Hrn. E. Zermelo. Annalen der physik 57: 773–784. English translation: Brush 1966, §8.CrossRefGoogle Scholar
  12. Boltzmann, L. 1871. Zur Priorität der Auffindung der Beziehung zwischen dem zweiten Haupsatze der mechanischen Wärmtheorie und dem Prinzip der kleinsten Wirkung. Annalen der physik 143(2), 23(5): 211–230.CrossRefGoogle Scholar
  13. Borel, E. 1906. Sur les principes de la théorie cinétique des gaz. Annales de l’Ecole Normale Supérieure 23: 9–32; Œuvres 3: 1669–1692.Google Scholar
  14. Borel, E. 1925. Mécanique statistique classique. Paris: Gauthier-Villars.Google Scholar
  15. Born, M. 1925. Vorlesungen über Atommechanik, vol. 2. Berlin: Springer. English translation: 1927. The Mechanics of the Atom. London: Bell.CrossRefGoogle Scholar
  16. Boyer, C.B., and U.C. Merzbach. 1968. A history of mathematics, 2nd ed. New-York: Wiley.Google Scholar
  17. Brillouin, L. 1964. Scientific uncertainty and information. New York: Academic Press.Google Scholar
  18. Brush, S.G. 1976. The kind of motion we call heat, 2 vols. (1986 paperback edition). Amsterdam: Elsevier Science Publishers – North Holland.Google Scholar
  19. Bryan, G.H. 1891. Report on the present state of our knowledge of thermodynamics, especially with regard to the second law. Report of the … meeting of British Association for the Advancement of Science, 85–122.Google Scholar
  20. Cahan, D. (ed.). 1993. Hermann von Helmholtz and the foundations of nineteenth-century science. Berkeley: University of California Press.Google Scholar
  21. Cercignani, C. 1998. Ludwig Boltzmann the man who trusted atoms. Oxford: Oxford University Press.Google Scholar
  22. Clausius, R. 1871. Ueber die Zurückfürhrung des zweiten Hauptsatzes der mechanischen Wärmetheorie auf allgemeine mecanische Principien. Annalen der physik 142: 433.Google Scholar
  23. Darrigol, O. 2000. Electrodynamics from Ampère to Einstein. Oxford: Oxford University Press.Google Scholar
  24. Darrigol, O. and J. Renn. 2000. The emergence of statistical mechanics , Contribution to the Enciclopedia Italiana.Google Scholar
  25. De Broglie, L. 1948. Diverses questions de mécanique et de thermodynamique classiques et relativistes, Manuscript course text, with preface by G. Lochak. Berlin: Springer.Google Scholar
  26. Gallavotti, G. 1994. Ergodicity, ensembles, irreversibility in Boltzmann’s and beyond. Journal of Statistical Physics 78: 1571–1589.CrossRefGoogle Scholar
  27. Grattan-Guiness, I. 1980. From the Calculus to Set Theory 1630–1910: An Introductory History. Trans. M.M. Perez, 1984. Madrid: Alianza Editorial.Google Scholar
  28. Helmholtz, H. 1884a. Studien zur Statik monocyklisher Systeme. Sitzungsberichte der Akademie der Wissenchaften zu Berlin 6 März 1884, 159–177; text no. 115 of Abhandlungen.Google Scholar
  29. Helmholtz, H. 1884b. Principien der Statik monocyklisher Systeme. Journal für die reine und angwandte Mathematik 97: 111–140 et 317–336; text no. 116 of Abhandlungen.Google Scholar
  30. Helmholtz, H. 1886. Ueber die physikalische Bedeutung des Princips der kleinsten Wirkung. Journal de Crelle 100: 137–166 et 213–222; text no. 120 of Abhandlungen.Google Scholar
  31. Klein, M.J. 1972. Mechanical explanation at the end of the nineteenth century. Centaurus 17: 58–82.CrossRefGoogle Scholar
  32. Klein, M.J. 1973. The development of Boltzmann’s statistical ideas. In Cohen 1973, 53–106.Google Scholar
  33. Langevin, P. 1913. Henri Poincaré: Le physicien. Revue de Métaphysique et de Morale, 704 et suiv.Google Scholar
  34. Maxwell, J.C. 1866. On the dynamical theory of gases. Philosophical Magazine 32; also in Philosophical Transactions 1867, 157: 4988. Also in Maxwell 1890, XXVIII: 26–78.Google Scholar
  35. Maxwell, J.C. 1871. Theory of heat. London: Longman.Google Scholar
  36. Maxwell, J.C. 1879. On Boltzmann’s theorem on the average distribution of energy in a system of material points. Cambridge Philosophical Society’s Transactions 12: 547–570; also 1890, XCIV: 713–742.Google Scholar
  37. Maxwell, J.C. 1890. The scientific papers of James Clerk Maxwell. Cambridge: Cambridge University Press.Google Scholar
  38. Maxwell, J.C. 1990. The scientific letters and papers of James Clerk Maxwell, 3 vols. (vol. 1, 1990; vol. 2, 1995), ed. P. Harman. Cambridge: Cambridge University Press.Google Scholar
  39. Poincaré, H. 1889. Sur les tentatives d’explication mécanique des principes de la thermodynamique. Académie des Sciences. Compte rendus hebdomadaires des séances 108: 550–553; Œuvres 10: 231–233.Google Scholar
  40. Poincaré, H. 1890a. Sur le problème des trois corps et les équations de la dynamique. Acta Mathematica 13: 1; Œuvres 7: 262.Google Scholar
  41. Poincaré, H. 1890b. Electricité et optique I. Les théories de Maxwell et la théorie électromagnétique de la lumière (lectures at the Sorbonne 1888). Paris: J. Blondin ed.Google Scholar
  42. Poincaré, H. 1891. Le problème des trois corps. Revue Générale des Sciences 2: 1–5; Œuvres 8: 529.Google Scholar
  43. Poincaré, H. 1892a. Thermodynamique, lectures presented during the fist semester of 1888–89, (1st ed. de 1892; 2nd ed. 1908). Paris: George Carré ed.Google Scholar
  44. Poincaré, H. 1892b. Réponses de Poincaré à Tait à propos de l’article de Tait Poincaré’s Thermodynamics. Nature 45: 414–415, 485, et 46: 76; Œuvres 10: 236–239.CrossRefGoogle Scholar
  45. Poincaré, H. 1892c. Les nouvelles méthodes de la mécanique céleste, vol. 1 (entire edition published between 1892 et 1899); English translation: Dover (New York), revised edition, Albert Blanchard (Paris).Google Scholar
  46. Poincaré, H. 1893a. Le mécanisme et l’expérience. Revue de Métaphysique et de Morale 1: 534–537.Google Scholar
  47. Poincaré, H. 1893b. Sur une objection à la théorie cinétique des gaz. Académie des Sciences. Compte rendus hebdomadaires des séances 116: 1017–1021; Œuvres 10: 240–243.Google Scholar
  48. Poincaré, H. 1894. Sur la théorie cinétique des gaz. Revue Générale des Sciences 5: 513–521; Œuvres 10: 246–263.Google Scholar
  49. Poincaré, H. 1896; 2ème éd.: 1912. Calcul de Probabilités. Paris: Gauthier-Villars.Google Scholar
  50. Poincaré, H. 1906. Réflexions sur la théorie cinétique des gaz. Journal de Physique 5: 369–403; Œuvres 10: 587–619.Google Scholar
  51. Poincaré, H. 1954. Oeuvres de Henri Poincaré, 11 vols. Paris: Gauthier-Villars.Google Scholar
  52. Príncipe, J. 2008. La réception française de la mécanique statistique, thèse doctorale dirigée par Olivier Darrigol. Paris: Université Paris Diderot (Paris 7).Google Scholar
  53. Príncipe, J. 2010. L’analogie et le pluralisme méthodologique chez James Clerk Maxwell. Kairos Journal of Philosophy and Science 1: 55–74.Google Scholar
  54. Príncipe, J. 2012. Sources et nature de la philosophie de la physique de Henri Poincaré. Philosophia Scientiae 16(2): 197–222.CrossRefGoogle Scholar
  55. Robadey, A. 2006. Élaboration d’un énoncé qui porte sur le degré de généralité d’une propriété: le travail de Poincaré autour du théorème de récurrence. Paris: REHSEIS.Google Scholar
  56. Thomson, W. 1892. On a decisive test-case disproving the Maxwell-Boltzmann doctrine regarding distribution of kinetic energy. Philosophical Magazine 33(5): 466.Google Scholar
  57. Thomson, W. 1893. Conférences scientifiques et allocutions, traduites et annotées sur la deuxième édition (1891) par P. Lugol, agrégé de Sciences physiques, Professeur au Lycée de Pau, avec des extraits de mémoires récents de Sir W. Thomson et quelques notes par M. Brillouin, maître de conférences à l’ENS; Paris: Gauthiers Villars.Google Scholar
  58. Truesdell, C. 1975. Early kinetic theory of gases. Archive History of Exact Sciences 15: 1–66.CrossRefGoogle Scholar
  59. Von Plato, J. 1994. Creating modern probability. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  60. Whittaker, E. 1899. Report on the progress of the solution of the problem of three bodies. Reports of the British Association, 121–159.Google Scholar
  61. Zermelo, E. 1896. Ueber einen satz der Dynamik und die mecanische Warmetheorie. Annalen der Physik 57: 485–494. English translation: Brush 1966, 2: 208–217.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.CEHFCi – Universidade de ÉvoraSacavémPortugal

Personalised recommendations