Advertisement

Poincaré on the Construction of Space-Time

  • Robert DiSalle
Chapter
Part of the The Western Ontario Series in Philosophy of Science book series (WONS, volume 79)

Abstract

One of the enduring challenges for the interpreter of Poincaré is to understand the connections between his analysis of the geometry of space and his view of the development of the theory of space-time. On the one hand, he saw that the invariance group of electrodynamics determines a four-dimensional space with a peculiar metrical structure. On the other hand, he resisted Einstein’s special theory of relativity, and continued to regard the Newtonian space-time structure as a sufficient foundation for the laws of physics. I propose to approach this question by considering the privileged position that space plays, according to Poincaré, in our conception of the physical world, and particularly in the construction of the fundamental concepts by which physical processes submit to objective measurement. Poincaré’s position results from granting the concept of space an epistemological priority that, in the face of modern physics, it was unable to sustain.

Keywords

Inertial Frame Relativity Principle Absolute Space Spatial Geometry Light Travel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ben-Menahem, Y. 2006. Conventionalism. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. Coffa, J.A. 1983. From geometry to tolerance: Sources of conventionalism in the 19th century. In From Quarks to Quasars, Pittsburgh Studies in the Philosophy of Science, vol. X, ed. R.G. Colodny. Pittsburgh: University of Pittsburgh Press.Google Scholar
  3. Coffa, J.A. 1991. The semantic tradition from Kant to Carnap. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  4. Demopoulos, W. 2000. On the origin and status of our conception of number. Notre Dame Journal of Formal Logic 41: 210–226.CrossRefGoogle Scholar
  5. Demopoulos, W. 2013. Carnap’s analysis of realism. In Logicism and its philosophical legacy, ed. W. Demopoulos, 68–89. Cambridge: Cambridge University Press.Google Scholar
  6. DiSalle, R. 2002. Reconsidering Ernst Mach on space, time, and motion. In Reading natural philosophy: Essays in the history and philosophy of science and mathematics to honor Howard Stein on his 70th birthday, ed. D. Malament. Chicago: Open Court Press.Google Scholar
  7. DiSalle, R. 2006. Understanding space-time: The philosophical development of physics from Newton to Einstein. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. DiSalle, R. 2009. Space and time: Inertial frames. In The Stanford encyclopedia of philosophy, (Winter 2009 edition), ed. Edward N. Zalta. http://plato.stanford.edu/archives/win2009/entries/spacetime-iframes/.
  9. Einstein, A. 1905. Zur elektrodynamik bewegter Körper. Annalen der Physik 17: 891–921.CrossRefGoogle Scholar
  10. Einstein, A. 1917. Über die spezielle und die allgemeine Relativitätstheorie (Gemeinverständlich), 2nd ed. Braunschweig: Vieweg und Sohn.Google Scholar
  11. Einstein, A. 1922. The meaning of relativity. Princeton: Princeton University Press.CrossRefGoogle Scholar
  12. Helmholtz, H. 1870. Ueber den Ursprung und die Bedeutung der geometrischen Axiome. Vorträge und Reden 2: 1–31.Google Scholar
  13. Helmholtz, H. 1878. Die Thatsachen in der Wahrnehmung. Vorträge und Reden 2: 215–247.Google Scholar
  14. Hilbert, D. 1899. Grundlagen der Geometrie. Leipzig: Teubner.Google Scholar
  15. Lange, L. 1885. Ueber das Beharrungsgesetz. Berichte der Königlichen Sachsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-physische Classe 37: 333–351.Google Scholar
  16. Leibniz, G.W. 1716. Correspondence with S. Clarke. In Gerhardt (1960), vol. VII, 345–440.Google Scholar
  17. Mach, E. 1883. Die Mechanik in ihrer Entwickelung, historisch-kritisch dargestellt. Leipzig: Brockhaus.Google Scholar
  18. Mach, E. 1889. Die Mechanik in ihrer Entwickelung, historisch-kritisch dargestellt, 2nd ed. Leipzig: Brockhaus.Google Scholar
  19. Maxwell, J.C. 1878. Matter and motion. New York: Van Nostrand.Google Scholar
  20. Minkowski, H. 1908. Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körper. Nachrichten der königlichen Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physische Klasse, 53–111.Google Scholar
  21. Minkowski, H. 1909. Raum und Zeit. Physikalische Zeitschrift 10: 104–111.Google Scholar
  22. Poincaré, H. 1898. La mesure du temps. Revue de Métaphysique et de Morale VI: 371–384.Google Scholar
  23. Poincaré, H. 1899. Des fondements de la géométrie; a propos d’un livre de M. Russell. Revue de Métaphysique et de Morale VII: 251–279.Google Scholar
  24. Poincaré, H. 1902. La Science et L’Hypothèse. Paris: Flammarion.Google Scholar
  25. Poincaré, H. 1905. Sur la dynamique de l’électron. Comptes rendues de l’Académie des Sciences 140: 1504–1508.Google Scholar
  26. Poincaré, H. 1908. La Science et La Méthode. Paris: Flammarion.Google Scholar
  27. Poincaré, H. 1912. L’espace et le temps. In Poincaré (1913), 97–109.Google Scholar
  28. Poincaré, H. 1913. Dernières Pensées. Paris: Flammarion.Google Scholar
  29. Reichenbach, H. 1965. The Theory of Relativity and A Priori Knowledge. Trans. Maria Reichenbach. Berkeley/Los Angeles: University of California Press. Originally published as Relativitätstheorie und Erkenntnis Apriori, Berlin, 1920.Google Scholar
  30. Riemann, B. 1867. Ueber die Hypothesen, die der Geometrie zu Grunde liegen. In The collected works of Bernhard Riemann, ed. H. Weber, 272–287. Leipzig: B.G. Teubner, 1902; reprint, New York: Dover Publications, 1956.Google Scholar
  31. Russell, B. 1899. Sur les axiomes de la géométrie. Revue de Métaphysique et de Morale VII: 684–707.Google Scholar
  32. Thomson, J. 1884. On the law of inertia; the principle of chronometry; and the principle of absolute clinural rest, and of absolute rotation. Proceedings of the Royal Society of Edinburgh 12: 568–578.Google Scholar
  33. Torretti, R. 1977. Philosophy of geometry from Riemann to Poincaré. Dordrecht: Riedel.Google Scholar
  34. Torretti, R. 1983. Relativity and geometry. Oxford: Pergamon Press.Google Scholar
  35. Van Fraassen, B. 2008. Scientific representation: Paradoxes of perspective. Oxford: Oxford University Press.Google Scholar
  36. Whittaker, E.T. 1951. A history of the theories of aether and electricity, Revised edition. London: Thomas Nelson.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of Western OntarioLondonCanada

Personalised recommendations