Skip to main content

MFG-E8 and Acute Lung Injury

  • Chapter
  • First Online:
MFG-E8 and Inflammation

Abstract

Although milk fat globule-epidermal growth factor-factor 8 (MFG-E8) was initially identified as a pivotal factor for the clearance of apoptotic cells, subsequent studies revealed its diverse cellular functions which is not only confined to the development of systemic lupus erythematosus (SLE), but also other systemic and localized acute inflammatory diseases. Herein, we have described the promising role of MFG-E8 in terms of attenuating the consequences of acute lung injury (ALI) in several animal models adopted by either direct lipopolysaccharide (LPS) instillation or indirectly via clinically relevant approaches, e.g., sepsis, ischemia-reperfusion, and hemorrhages. Current chapter emphasizes the pathophysiology of ALI and the implications of MFG-E8 mode of actions towards implementing it as a potential therapeutic target to improve disease prognosis in critically ill patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALI:

Acute lung injury

ARDS:

Acute respiratory distress syndrome

CLP:

Cecal ligation and puncture

GRK2:

G-protein coupled receptor kinase 2

I/R:

Ischemia/reperfusion

ICAM-1:

Intercellular adhesion molecule-1

IFN-γ:

Interferon-γ

LAD:

Leukocyte adhesion deficiency

MFG-E8:

Milk fat globule-epidermal growth factor-factor 8

MMP:

Matrix metalloproteinases

MPO:

Myeloperoxidase

NF-κB:

Neuclear factor-κB

NOS:

Nitric oxide synthase

PS:

Phosphatidylserine

RGD:

Arginine-glycine-aspartate

ROS:

Reactive oxygen species

TLR:

Toll like receptor

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

VCAM-1:

Vascular cell adhesion molecule-1

References

  1. Oshima K, Aoki N, Kato T, Kitajima K, Matsuda T (2002) Secretion of a peripheral membrane protein, MFG-E8, as a complex with membrane sesicles. Eur J Biochem 269:1209–1218

    Article  PubMed  CAS  Google Scholar 

  2. Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S (2002) Identification of a factor that links apoptotic cells to phagocytes. Nature 417:182–187

    Article  PubMed  CAS  Google Scholar 

  3. Hanayama R, Tanaka M, Miyasaka K, Aozasa K, Koike M, Uchiyama Y, Nagata S (2004) Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304:1147–1150

    Article  PubMed  CAS  Google Scholar 

  4. Matsuda A, Jacob A, Wu R, Zhou M, Nicastro JM, Coppa GF, Wang P (2010) Milk fat globule-EGF factor VIII in sepsis and ischemia-reperfusion injury. Mol Med 17:126–133

    PubMed Central  PubMed  Google Scholar 

  5. Aziz MM, Ishihara S, Mishima Y, Oshima N, Moriyama I, Yuki T, Kadowaki Y, Rumi MA, Amano Y, Kinoshita Y (2009) MFG-E8 attenuates intestinal inflammation in murine experimental colitis by modulating osteopontin-dependent alphavbeta3 integrin signaling. J Immunol 182:7222–7232

    Google Scholar 

  6. Aziz M, Matsuda A, Yang WL, Jacob A, Wang P (2012) Milk fat globule-epidermal growth factor-factor 8 attenuates neutrophil infiltration in acute lung injury via modulation of CXCR2. J Immunol 189(1):393–402

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Aziz M, Jacob A, Matsuda A, Wang P (2011) Review: milk fat globule-EGF factor 8 expression, function and plausible signal transduction in resolving inflammation. Apoptosis 16(11):1077–1086

    Article  PubMed  CAS  Google Scholar 

  8. Bu HF, Zuo XL, Wang X, Ensslin MA, Koti V, Hsueh W, Raymond AS, Shur BD, Tan XD (2007) Milk fat globule-EGF factor 8/lactadherin plays a crucial role in maintenance and repair of murine intestinal epithelium. J Clin Invest 117:3673–3683

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Atabai K, Jame S, Azhar N, Kuo A, Lam M, McKleroy W, Dehart G, Rahman S, Xia DD, Melton AC, Wolters P, Emson CL, Turner SM, Werb Z, Sheppard D (2009) Mfge8 diminishes the severity of tissue fibrosis in mice by binding and targeting collagen for uptake by macrophages. J Clin Invest 119(12):3713–3722

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE (1967) Acute respiratory distress in adults. Lancet 2(7511):319–323

    Article  PubMed  CAS  Google Scholar 

  11. Johnson ER, Matthay MA (2010) Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv 23(4):243–252

    Article  PubMed Central  PubMed  Google Scholar 

  12. Tsushima K, King LS, Aggarwal NR, De Gorordo A, D’Alessio FR, Kubo K (2009) Acute lung injury review. Intern Med 48(9):621–630

    Article  PubMed  Google Scholar 

  13. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353(16):1685–1693

    Article  PubMed  CAS  Google Scholar 

  14. Abel SJ, Finney SJ, Brett SJ, Keogh BF, Morgan CJ, Evans TW (1998) Reduced mortality in association with the acute respiratory distress syndrome (ARDS). Thorax 53(4):292–294

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Milberg JA, Davis DR, Steinberg KP, Hudson LD (1995) Improved survival of patients with acute respiratory distress syndrome (ARDS): 1983–1993. JAMA 273(4):306–309

    Article  PubMed  CAS  Google Scholar 

  16. Brown KA, Brain SD, Pearson JD, Edgeworth JD, Lewis SM, Treacher DF (2006) Neutrophils in development of multiple organ failure in sepsis. Lancet 368(9530):157–169

    Article  PubMed  CAS  Google Scholar 

  17. Grommes J, Soehnlein O (2011) Contribution of neutrophils to acute lung injury. Mol Med 17(3–4):293–307

    PubMed Central  PubMed  CAS  Google Scholar 

  18. Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1994) Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 127(6 Pt 1):1617–1626

    Article  PubMed  CAS  Google Scholar 

  19. Su WH, Chen HI, Jen CJ (2002) Differential movements of VE-cadherin and PECAM-1 during transmigration of polymorphonuclear leukocytes through human umbilical vein endothelium. Blood 100(10):3597–3603

    Article  PubMed  CAS  Google Scholar 

  20. Carlow DA, Gossens K, Naus S, Veerman KM, Seo W, Ziltener HJ (2009) PSGL-1 function in immunity and steady state homeostasis. Immunol Rev 230(1):75–96

    Article  PubMed  CAS  Google Scholar 

  21. Laszik Z, Jansen PJ, Cummings RD, Tedder TF, McEver RP, Moore KL (1996) P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid, and dendritic lineage and in some nonhematopoietic cells. Blood 88(8):3010–3021

    PubMed  CAS  Google Scholar 

  22. Mulligan MS, Varani J, Warren JS, Till GO, Smith CW, Anderson DC, Todd RF 3rd, Ward PA (1992) Roles of beta 2 integrins of rat neutrophils in complement- and oxygen radical-mediated acute inflammatory injury. J Immunol 148(6):1847–1857

    PubMed  CAS  Google Scholar 

  23. Plitas G, Gagne PJ, Muhs BE, Ianus IA, Shaw JP, Beudjekian M, Delgado Y, Jacobowitz G, Rockman C, Shamamian P (2003) Experimental hindlimb ischemia increases neutrophil-mediated matrix metalloproteinase activity: a potential mechanism for lung injury after limb ischemia. J Am Coll Surg 196(5):761–767

    Article  PubMed  Google Scholar 

  24. Steinberg J, Halter J, Schiller HJ, Dasilva M, Landas S, Gatto LA, Maisi P, Sorsa T, Rajamaki M, Lee HM, Nieman GF (2003) Metalloproteinase inhibition reduces lung injury and improves survival after cecal ligation and puncture in rats. J Surg Res 111(2):185–195

    Article  PubMed  CAS  Google Scholar 

  25. Torii K, Iida K, Miyazaki Y, Saga S, Kondoh Y, Taniguchi H, Taki F, Takagi K, Matsuyama M, Suzuki R (1997) Higher concentrations of matrix metalloproteinases in bronchoalveolar lavage fluid of patients with adult respiratory distress syndrome. Am J Respir Crit Care Med 155(1):43–46

    Article  PubMed  CAS  Google Scholar 

  26. Pugin J, Verghese G, Widmer MC, Matthay MA (1999) The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome. Crit Care Med 27(2):304–312

    Article  PubMed  CAS  Google Scholar 

  27. Doss M, White MR, Tecle T, Hartshorn KL (2010) Human defensins and LL-37 in mucosal immunity. J Leukoc Biol 87(1):79–92

    Article  PubMed  CAS  Google Scholar 

  28. Kai-Larsen Y, Agerberth B (2008) The role of the multifunctional peptide LL-37 in host defense. Front Biosci 13:3760–3767

    Article  PubMed  CAS  Google Scholar 

  29. Tecle T, Tripathi S, Hartshorn KL (2010) Review: defensins and cathelicidins in lung immunity. Innate Immun 16(3):151–159

    Article  PubMed  CAS  Google Scholar 

  30. Ashitani J, Mukae H, Arimura Y, Sano A, Tokojima M, Nakazato M (2004) High concentrations of alpha-defensins in plasma and bronchoalveolar lavage fluid of patients with acute respiratory distress syndrome. Life Sci 75(9):1123–1134

    Article  PubMed  CAS  Google Scholar 

  31. Soehnlein O, Kai-Larsen Y, Frithiof R, Sorensen OE, Kenne E, Scharffetter-Kochanek K, Eriksson EE, Herwald H, Agerberth B, Lindbom L (2008) Neutrophil primary granule proteins HBP and HNP1-3 boost bacterial phagocytosis by human and murine macrophages. J Clin Invest 118(10):3491–3502

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Sakamoto N, Mukae H, Fujii T, Ishii H, Yoshioka S, Kakugawa T, Sugiyama K, Mizuta Y, Kadota J, Nakazato M, Kohno S (2005) Differential effects of alpha- and beta-defensin on cytokine production by cultured human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 288(3):L508–L513

    Article  PubMed  CAS  Google Scholar 

  33. Nygaard SD, Ganz T, Peterson MW (1993) Defensins reduce the barrier integrity of a cultured epithelial monolayer without cytotoxicity. Am J Respir Cell Mol Biol 8(2):193–200

    Article  PubMed  CAS  Google Scholar 

  34. Grigat J, Soruri A, Forssmann U, Riggert J, Zwirner J (2007) Chemoattraction of macrophages, T lymphocytes, and mast cells is evolutionarily conserved within the human alpha-defensin family. J Immunol 179(6):3958–3965

    Article  PubMed  CAS  Google Scholar 

  35. Soehnlein O, Lindbom L (2009) Neutrophil-derived azurocidin alarms the immune system. J Leukoc Biol 85(3):344–351

    Article  PubMed  CAS  Google Scholar 

  36. Lau D, Mollnau H, Eiserich JP, Freeman BA, Daiber A, Gehling UM, Brummer J, Rudolph V, Munzel T, Heitzer T, Meinertz T, Baldus S (2005) Myeloperoxidase mediates neutrophil activation by association with CD11b/CD18 integrins. Proc Natl Acad Sci U S A 102:431–436

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Lefkowitz DL, Mills KC, Moguilevsky N, Bollen A, Vaz A, Lefkowitz SS (1993) Regulation of macrophage function by human recombinant myeloperoxidase. Immunol Lett 36(1):43–49

    Article  PubMed  CAS  Google Scholar 

  38. Liang B, Petty HR (1992) Imaging neutrophil activation: analysis of the translocation and utilization of NAD(P)H-associated autofluorescence during antibody-dependent target oxidation. J Cell Physiol 152(1):145–156

    Article  PubMed  CAS  Google Scholar 

  39. Auten RL, Whorton MH, Nicholas Mason S (2002) Blocking neutrophil influx reduces DNA damage in hyperoxia-exposed newborn rat lung. Am J Respir Cell Mol Biol 26(4):391–397

    Article  PubMed  CAS  Google Scholar 

  40. Chiarugi P, Pani G, Giannoni E, Taddei L, Colavitti R, Raugei G, Symons M, Borrello S, Galeotti T, Ramponi G (2003) Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol 161(5):933–944

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Scheel-Toellner D, Wang K, Craddock R, Webb PR, McGettrick HM, Assi LK, Parkes N, Clough LE, Gulbins E, Salmon M, Lord JM (2004) Reactive oxygen species limit neutrophil life span by activating death receptor signaling. Blood 104(8):2557–2564

    Article  PubMed  CAS  Google Scholar 

  42. Matute-Bello G, Frevert CW, Martin TR (2008) Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 295(3):L379–L399

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Moore BB, Hogaboam CM (2008) Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 294(2):L152–L160

    Article  PubMed  CAS  Google Scholar 

  44. Villar J, Ribeiro SP, Mullen JB, Kuliszewski M, Post M, Slutsky AS (1994) Induction of the heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model. Crit Care Med 22(6):914–921

    Article  PubMed  CAS  Google Scholar 

  45. Prop J, Ehrie MG, Crapo JD, Nieuwenhuis P, Wildevuur CR (1984) Reimplantation response in isografted rat lungs. Analysis of causal factors. J Thorac Cardiovasc Surg 87(5):702–711

    PubMed  CAS  Google Scholar 

  46. Jackson RM, Russell WJ, Veal CF (1992) Endogenous and exogenous catalase in reoxygenation lung injury. J Appl Physiol 72(3):858–864

    PubMed  CAS  Google Scholar 

  47. Cross AS, Opal SM, Sadoff JC, Gemski P (1993) Choice of bacteria in animal models of sepsis. Infect Immun 61:2741–2747

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Shah KG, Wu R, Jacob A, Molmenti EP, Nicastro J, Coppa GF, Wang P (2012) Recombinant human milk fat globule-EGF factor 8 produces dose-dependent benefits in sepsis. Intensive Care Med 38(1):128–136

    Article  PubMed  CAS  Google Scholar 

  49. Cui T, Miksa M, Wu R, Komura H, Zhou M, Dong W, Wang Z, Higuchi S, Chaung W, Blau SA, Marini CP, Ravikumar TS, Wang P (2010) Milk fat globule epidermal growth factor 8 attenuates acute lung injury in mice after intestinal ischemia and reperfusion. Am J Respir Crit Care Med 181(3):238–246

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Zhang F, Shah KG, Qi L, Wu R, Barrera R, Nicastro J, Coppa GF, Wang P (2012) Milk fat globule epidermal growth factor-factor 8 mitigates inflammation and tissue injury after hemorrhagic shock in experimental animals. J Trauma Acute Care Surg 72(4):861–869

    PubMed Central  PubMed  CAS  Google Scholar 

  51. Schuster DP (1994) ARDS: clinical lessons from the oleic acid model of acute lung injury. Am J Respir Crit Care Med 149:245–260

    Article  PubMed  CAS  Google Scholar 

  52. Pinhu L, Whitehead T, Evans T, Griffiths M (2003) Ventilator-associated lung injury. Lancet 361(9354):332–340

    Article  PubMed  Google Scholar 

  53. Bernard GR, Luce JM, Sprung CL, Rinaldo JE, Tate RM, Sibbald WJ, Kariman K, Higgins S, Bradley R, Metz CA, Harris TR, Bringham KL (1987) High-dose corticosteroids in patients with the adult respiratory distress syndrome. N Engl J Med 317(25):1565–1570

    Article  PubMed  CAS  Google Scholar 

  54. Luce JM, Montgomery AB, Marks JD, Turner J, Metz CA, Murray JF (1988) Ineffectiveness of high-dose methylprednisolone in preventing parenchymal lung injury and improving mortality in patients with septic shock. Am Rev Respir Dis 138(1):62–68

    Article  PubMed  CAS  Google Scholar 

  55. Anzueto A, Baughman RP, Guntupalli KK, Weg JG, Wiedemann HP, Raventós AA, Lemaire F, Long W, Zaccardelli DS, Pattishall EN (1996) Aerosolized surfactant in adults with sepsis-induced acute respiratory distress syndrome. Exosurf Acute Respiratory Distress Syndrome Sepsis Study Group. N Engl J Med 334(22):1417–1421

    Article  PubMed  CAS  Google Scholar 

  56. Domenighetti G, Suter PM, Schaller MD, Ritz R, Perret C (1997) Treatment with N-acetylcysteine during acute respiratory distress syndrome: a randomized, double-blind, placebo-controlled clinical study. J Crit Care 12(4):177–182

    Article  PubMed  CAS  Google Scholar 

  57. Meduri GU, Headley AS, Golden E, Carson SJ, Umberger RA, Kelso T, Tolley EA (1998) Effect of prolonged methylprednisolone therapy in unresolving acute respiratory distress syndrome: a randomized controlled trial. JAMA 280(2):159–165

    Article  PubMed  CAS  Google Scholar 

  58. McAuley DF, Matthay MA (2005) Is there a role for beta-adrenoceptor agonists in the management of acute lung injury and the acute respiratory distress syndrome? Treat Respir Med 4(5):297–307

    Article  PubMed  CAS  Google Scholar 

  59. Manocha S, Gordon AC, Salehifar E, Groshaus H, Walley KR, Russell JA (2006) Inhaled beta-2 agonist salbutamol and acute lung injury: an association with improvement in acute lung injury. Crit Care 10(1):R12

    Article  PubMed Central  PubMed  Google Scholar 

  60. Matthay MA, Brower RG, Carson S, Douglas IS, Eisner M, Hite D, Holets S, Kallet RH, Liu KD, MacIntyre N, Moss M, Schoenfeld D, Steingrub J, Thompson BT (2011) Randomized, placebo-controlled clinical trial of an aerosolized β2-agonist for treatment of acute lung injury. Am J Respir Crit Care Med 184(5):561–568

    Article  PubMed  CAS  Google Scholar 

  61. Liappis AP, Kan VL, Rochester CG, Simon GL (2001) The effect of statins on mortality in patients with bacteremia. Clin Infect Dis 33(8):1352–1357

    Article  PubMed  CAS  Google Scholar 

  62. Kruger P, Fitzsimmons K, Cook D, Jones M, Nimmo G (2006) Statin therapy is associated with fewer deaths in patients with bacteraemia. Intensive Care Med 32(1):75–79

    Article  PubMed  Google Scholar 

  63. Kor DJ, Iscimen R, Yilmaz M, Brown MJ, Brown DR, Gajic O (2009) Statin administration did not influence the progression of lung injury or associated organ failures in a cohort of patients with acute lung injury. Intensive Care Med 35(6):1039–1046

    Article  PubMed  CAS  Google Scholar 

  64. Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J, Brigham KL (2005) Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 33(2):145–152

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA (2007) Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 179(3):1855–1863

    Article  PubMed  CAS  Google Scholar 

  66. Ayala A, Chung CS, Lomas JL, Song GY, Doughty LA, Gregory SH, Cioffi WG, LeBlanc BW, Reichner J, Simms HH, Grutkoski PS (2002) Shock-induced neutrophil mediated priming for acute lung injury in mice: divergent effects of TLR-4 and TLR-4/FasL deficiency. Am J Pathol 161:2283–2294

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Abraham E (2003) Neutrophils and acute lung injury. Crit Care Med 31:S195–S199

    Article  PubMed  Google Scholar 

  68. Lee WL, Downey GP (2001) Neutrophil activation and acute lung injury. Curr Opin Crit Care 7:1–7

    Article  PubMed  CAS  Google Scholar 

  69. Zarbock A, Ley K (2008) Mechanisms and consequences of neutrophil interaction with the endothelium. Am J Pathol 172:1–7

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Donnelly SC, Strieter RM, Kunkel SL, Walz A, Robertson CR, Carter DC, Grant IS, Pollok AJ, Haslett C (1993) Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet 341:643–647

    Article  PubMed  CAS  Google Scholar 

  71. Goodman RB, Strieter RM, Martin DP, Steinberg KP, Milberg JA, Maunder RJ, Kunkel SL, Walz A, Hudson LD, Martin TR (1996) Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome. Am J Respir Crit Care Med 154:602–611

    Article  PubMed  CAS  Google Scholar 

  72. Olson TS, Ley K (2002) Chemokines and chemokine receptors in leukocyte trafficking. Am J Physiol Regul Integr Comp Physiol 283:R7–R28

    PubMed  CAS  Google Scholar 

  73. Reutershan J, Morris MA, Burcin TL, Smith DF, Chang D, Saprito MS, Ley K (2006) Critical role of endothelial CXCR2 in LPS-induced neutrophil migration into the lung. J Clin Invest 116:695–702

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Komura H, Miksa M, Wu R, Goyert SM, Wang P (2009) Milk fat globule epidermal growth factor-factor VIII is down-regulated in sepsis via the lipopolysaccharide-CD14 pathway. J Immunol 182(1):581–587

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Miksa M, Wu R, Dong W, Das P, Yang D, Wang P (2006) Dendritic cell-derived exosomes containing milk fat globule epidermal growth factor-factor VIII attenuate proinflammatory responses in sepsis. Shock 25:586–593

    Article  PubMed  CAS  Google Scholar 

  76. Aziz M, Jacob A, Matsuda A, Wu R, Zhou M, Dong W, Yang WL, Wang P (2011) Pre-treatment of recombinant mouse MFG-E8 downregulates LPS-induced TNF-α production in macrophages via STAT3-mediated SOCS3 activation. PLoS One 6(11):e27685

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Moon C, Han JR, Park HJ, Hah JS, Kang JL (2009) Synthetic RGDS peptide attenuates lipopolysaccharide-induced pulmonary inflammation by inhibiting integrin signaled MAP kinase pathways. Respir Res 10:18

    Article  PubMed Central  PubMed  Google Scholar 

  78. Tendler DA (2003) Acute intestinal ischemia and infarction. Semin Gastrointest Dis 14(2):66–76

    PubMed  Google Scholar 

  79. Matthay MA, Zimmerman GA, Esmon C, Bhattacharya J, Coller B, Doerschuk CM, Floros J, Gimbrone MA Jr, Hoffman E, Hubmayr RD, Leppert M, Matalon S, Munford R, Parsons P, Slutsky AS, Tracey KJ, Ward P, Gail DB, Harabin AL (2003) Future research directions in acute lung injury: summary of a National Heart, Lung, and Blood Institute working group. Am J Respir Crit Care Med 167(7):1027–1035

    Article  PubMed  Google Scholar 

  80. An S, Hishikawa Y, Liu J, Koji T (2007) Lung injury after ischemia-reperfusion of small intestine in rats involves apoptosis of type II alveolar epithelial cells mediated by TNF-alpha and activation of Bid pathway. Apoptosis 12:1989–2001

    Article  PubMed  CAS  Google Scholar 

  81. Seitz DH, Perl M, Mangold S, Neddermann A, Braumuller ST, Zhou S, Bachem MG, Huber-Lang MS, Knoferl MW (2008) Pulmonary contusion induces alveolar type 2 epithelial cell apoptosis: role of alveolar macrophages and neutrophils. Shock 30:537–544

    Article  PubMed  Google Scholar 

  82. Raghu G, Striker LJ, Hudson LD, Striker GE (1985) Extracellular matrix in normal and fibrotic human lungs. Am Rev Respir Dis 131:281–289

    PubMed  CAS  Google Scholar 

  83. Chua F, Gauldie J, Laurent GJ (2005) Pulmonary fibrosis: searching for model answers. Am J Respir Cell Mol Biol 33(1):9–13

    Article  PubMed  CAS  Google Scholar 

  84. Gross TJ, Hunninghake GW (2001) Idiopathic pulmonary fibrosis. N Engl J Med 345(7):517–525

    Article  PubMed  CAS  Google Scholar 

  85. Everts V, van der Zee E, Creemers L, Beertsen W (1996) Phagocytosis and intracellular digestion of collagen, its role in turnover and remodelling. Histochem J 28(4):229–245

    Article  PubMed  CAS  Google Scholar 

  86. Song F, Wisithphrom K, Zhou J, Windsor LJ (2006) Matrix metalloproteinase dependent and independent collagen degradation. Front Biosci 11:3100–3120

    Article  PubMed  CAS  Google Scholar 

  87. Grainge CL, Lau LC, Ward JA, Dulay V, Lahiff G, Wilson S, Holgate S, Davies DE, Howarth PH (2011) Effect of bronchoconstriction on airway remodeling in asthma. N Engl J Med 364(21):2006–2015

    Article  PubMed  CAS  Google Scholar 

  88. Chiba Y, Nakazawa S, Todoroki M, Shinozaki K, Sakai H, Misawa M (2009) Interleukin-13 augments bronchial smooth muscle contractility with an up-regulation of RhoA protein. Am J Respir Cell Mol Biol 40(2):159–167

    Article  PubMed  CAS  Google Scholar 

  89. Goto K, Chiba Y, Matsusue K, Hattori Y, Maitani Y, Sakai H, Kimura S, Misawa M (2010) The proximal STAT6 and NF-kappaB sites are responsible for IL-13- and TNF-alpha-induced RhoA transcriptions in human bronchial smooth muscle cells. Pharmacol Res 61(5):466–472

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Chen H, Tliba O, Van Besien CR, Panettieri RA Jr, Amrani Y (2003) TNF-[alpha] modulates murine tracheal rings responsiveness to G-protein-coupled receptor agonists and KCl. J Appl Physiol 95(2):864–872

    PubMed  CAS  Google Scholar 

  91. Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83(4):1325–1358

    PubMed  CAS  Google Scholar 

  92. Schaafsma D, Zuidhof AB, Nelemans SA, Zaagsma J, Meurs H (2006) Inhibition of Rho-kinase normalizes nonspecific hyperresponsiveness in passively sensitized airway smooth muscle preparations. Eur J Pharmacol 531(1–3):145–150

    Article  PubMed  CAS  Google Scholar 

  93. Kudo M, Khalifeh Soltani SM, Sakuma SA, McKleroy W, Lee TH, Woodruff PG, Lee JW, Huang K, Chen C, Arjomandi M, Huang X, Atabai K (2013) Mfge8 suppresses airway hyperresponsiveness in asthma by regulating smooth muscle contraction. Proc Natl Acad Sci U S A 110(2):660–665

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. Hotchkiss RS, Coopersmith CM, Karl IE (2005) Prevention of lymphocyteapoptosis–a potential treatment of sepsis? Clin Infect Dis 41:S465–S469

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institutes of Health (NIH) grants, R01 GM 057468 and R33 AI 080536 (P.W.).

Conflict of Interest

P. Wang is an inventor of the pending PCT application #WO/2006/122327: “Milk fat globule epidermal growth factor-factor VIII and sepsis” and PCT application #WO/2009/064448: “Prevention and treatment of inflammation and organ injury after ischemia/reperfusion using MFG-E8”. These patent applications cover the fundamental concept of using MFG-E8 for the treatment of sepsis and ischemia/reperfusion injury. M. Aziz reports no financial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aziz, M., Wang, P. (2014). MFG-E8 and Acute Lung Injury. In: Wang, P. (eds) MFG-E8 and Inflammation. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8765-9_9

Download citation

Publish with us

Policies and ethics