Skip to main content

MFG-E8 as a Marker for Apoptotic, Stressed and Activated Cells

  • Chapter
  • First Online:
MFG-E8 and Inflammation

Abstract

Milk fat globule-epidermal growth factor-factor 8 (MFG-E8)/lactadherin’s ability to specifically recognize phosphatidylserine (PS) in membranes has been recognized as an excellent tool in a variety of scientific and clinical contexts. An asymmetric pattern of phospholipids across cellular membranes in eukaryotes is a fundamental property in maintaining normal cell function. However, randomization of phospholipids is an equally important event when cells are activated leading to exposure of the otherwise hidden PS crucial in orchestrating downstream events in apoptosis and coagulation. Lactadherin has in recent years been recognized as a sensitive PS binding protein for visualizing apoptosis and as an anticoagulant. Compared to the benchmark PS-probe, annexin V, lactadherin seems to be superior in several PS binding properties. Numerous studies show the usefulness of lactadherin in monitoring cell health in vitro and in vivo, in detecting cell-derived PS exposing microparticles, or for exploring mechanisms in apoptosis. Moreover, radio-labeled lactadherin has been proposed as a non-invasive marker in the clinic for imaging of apoptotic events. Lactadherins PS recognition owes to the proteins C-domains, and has been used in recombinant exosome engineering in addressing proteins of interest to surfaces of nano-membrane particles. This chapter outlines the use of lactadherin as a PS binding protein, based on several publications where many of these are conducted in collaboration with us, and reflects our experimental experiences with the protein over several years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FITC:

Fluorescein isothiocyanate

HYNIC:

Hydrazinonicotinamide

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PS:

Phosphatidylserine

References

  1. Fadeel B, Xue D (2009) The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit Rev Biochem Mol Biol 44(5):264–277. doi:10.1080/10409230903193307

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Leventis PA, Grinstein S (2010) The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys 39:407–427. doi:10.1146/annurev.biophys.093008.131234

    Article  PubMed  CAS  Google Scholar 

  3. Coleman JA, Quazi F, Molday RS (2013) Mammalian P4-ATPases and ABC transporters and their role in phospholipid transport. Biochim Biophys Acta 1831(3):555–574. doi:10.1016/j.bbalip.2012.10.006

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Bevers EM, Williamson PL (2010) Phospholipid scramblase: an update. FEBS Lett 584(13):2724–2730. doi:10.1016/j.febslet.2010.03.020

    Article  PubMed  CAS  Google Scholar 

  5. Zhao J, Zhou Q, Wiedmer T, Sims PJ (1998) Level of expression of phospholipid scramblase regulates induced movement of phosphatidylserine to the cell surface. J Biol Chem 273(12):6603–6606

    Article  PubMed  CAS  Google Scholar 

  6. Zhou Q, Zhao J, Wiedmer T, Sims PJ (2002) Normal hemostasis but defective hematopoietic response to growth factors in mice deficient in phospholipid scramblase 1. Blood 99(11):4030–4038. doi:10.1182/blood-2001-12-0271

    Article  PubMed  CAS  Google Scholar 

  7. Kunzelmann K, Nilius B, Owsianik G et al (2013) Molecular functions of anoctamin 6 (TMEM16F): a chloride channel, cation channel, or phospholipid scramblase? Pflugers Arch. doi:10.1007/s00424-013-1305-1

    Google Scholar 

  8. Suzuki J, Fujii T, Imao T, Ishihara K, Kuba H, Nagata S (2013) Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J Biol Chem 288(19):13305–13316. doi:10.1074/jbc.M113.457937

    Article  PubMed  CAS  Google Scholar 

  9. Palmgren MG, Nissen P (2011) P-type ATPases. Annu Rev Biophys 40:243–266. doi:10.1146/annurev.biophys.093008.131331

    Article  PubMed  CAS  Google Scholar 

  10. Fadok VA, Bratton DL, Guthrie L, Henson PM (2001) Differential effects of apoptotic versus lysed cells on macrophage production of cytokines: role of proteases. J Immunol 166(11):6847–6854

    Article  PubMed  CAS  Google Scholar 

  11. Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S (2002) Identification of a factor that links apoptotic cells to phagocytes. Nature 417(6885):182–187. doi:10.1038/417182a

    Article  PubMed  CAS  Google Scholar 

  12. Akakura S, Singh S, Spataro M et al (2004) The opsonin MFG-E8 is a ligand for the alphavbeta5 integrin and triggers DOCK180-dependent Rac1 activation for the phagocytosis of apoptotic cells. Exp Cell Res 292(2):403–416

    Article  PubMed  CAS  Google Scholar 

  13. Hoekstra D, Buist-Arkema R, Klappe K, Reutelingsperger CP (1993) Interaction of annexins with membranes: the N-terminus as a governing parameter as revealed with a chimeric annexin. Biochemistry (Mosc) 32(51):14194–14202

    Article  CAS  Google Scholar 

  14. Sugimura M, Donato R, Kakkar VV, Scully MF (1994) Annexin V as a probe of the contribution of anionic phospholipids to the procoagulant activity of tumour cell surfaces. Blood Coagul Fibrinolysis 5(3):365–373

    PubMed  CAS  Google Scholar 

  15. Martin SJ, Reutelingsperger CP, McGahon AJ et al (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182(5):1545–1556

    Article  PubMed  CAS  Google Scholar 

  16. Andersen MH, Graversen H, Fedosov SN, Petersen TE, Rasmussen JT (2000) Functional analyses of two cellular binding domains of bovine lactadherin. Biochemistry (Mosc) 39(20):6200–6206

    Article  CAS  Google Scholar 

  17. Andersen MH, Berglund L, Rasmussen JT, Petersen TE (1997) Bovine PAS-6/7 binds alpha v beta 5 integrins and anionic phospholipids through two domains. Biochemistry (Mosc) 36(18):5441–5446. doi:10.1021/bi963119m

    Article  CAS  Google Scholar 

  18. Otzen DE, Blans K, Wang H, Gilbert GE, Rasmussen JT (2012) Lactadherin binds to phosphatidylserine-containing vesicles in a two-step mechanism sensitive to vesicle size and composition. Biochim Biophys Acta 1818(4):1019–1027. doi:10.1016/j.bbamem.2011.08.032

    Article  PubMed  CAS  Google Scholar 

  19. Novakovic VA, Gilbert ER, Shi J, Gilbert GE (2012) Poster: lactadherin C2 domain exhibits Ptd-L-Ser specificity and anticoagulant properties distinct from homologous factor VIII C2 domain and full-length lactadherin. Available at: https://ash.confex.com/ash/2012/webprogram/Paper53514.html. Accessed 28 Aug 2013

  20. Shao C, Novakovic VA, Head JF, Seaton BA, Gilbert GE (2008) Crystal structure of lactadherin C2 domain at 1.7A resolution with mutational and computational analyses of its membrane-binding motif. J Biol Chem 283(11):7230–7241

    Article  PubMed  CAS  Google Scholar 

  21. Lin L, Huai Q, Huang M, Furie B, Furie BC (2007) Crystal structure of the bovine lactadherin C2 domain, a membrane binding motif, shows similarity to the C2 domains of factor V and factor VIII. J Mol Biol 371(3):717–724. doi:10.1016/j.jmb.2007.05.054

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Zheng H, Wang F, Wang Q, Gao J (2011) Cofactor-free detection of phosphatidylserine with cyclic peptides mimicking lactadherin. J Am Chem Soc 133(39):15280–15283. doi:10.1021/ja205911n

    Article  PubMed  CAS  Google Scholar 

  23. Shi J, Shi Y, Waehrens LN, Rasmussen JT, Heegaard CW, Gilbert GE (2006) Lactadherin detects early phosphatidylserine exposure on immortalized leukemia cells undergoing programmed cell death. Cytom Part A: J Int Soc Anal Cytol 69(12):1193–1201. doi:10.1002/cyto.a.20345

    Article  Google Scholar 

  24. Larson MC, Luthi MR, Hogg N, Hillery CA (2013) Calcium-phosphate microprecipitates mimic microparticles when examined with flow cytometry. Cytom Part A: J Int Soc Anal Cytol 83(2):242–250. doi:10.1002/cyto.a.22222

    Article  Google Scholar 

  25. Kenis H, van Genderen H, Bennaghmouch A et al (2004) Cell surface-expressed phosphatidylserine and annexin A5 open a novel portal of cell entry. J Biol Chem 279(50):52623–52629. doi:10.1074/jbc.M409009200

    Article  PubMed  CAS  Google Scholar 

  26. Hu T, Shi J, Jiao X, Zhou J, Yin X (2008) Measurement of annexin V uptake and lactadherin labeling for the quantification of apoptosis in adherent Tca8113 and ACC-2 cells. Braz J Med Biol Res 41(9):750–757

    Google Scholar 

  27. Swairjo MA, Concha NO, Kaetzel MA, Dedman JR, Seaton BA (1995) Ca(2+)-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat Struct Biol 2(11):968–974

    Article  PubMed  CAS  Google Scholar 

  28. Shi J, Gilbert GE (2003) Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid-binding sites. Blood 101(7):2628–2636. doi:10.1182/blood-2002-07-1951

    Article  PubMed  CAS  Google Scholar 

  29. Shi J, Heegaard CW, Rasmussen JT, Gilbert GE (2004) Lactadherin binds selectively to membranes containing phosphatidyl-L-serine and increased curvature. Biochim Biophys Acta 1667(1):82–90. doi:10.1016/j.bbamem.2004.09.006

    Article  PubMed  CAS  Google Scholar 

  30. Andree HA, Stuart MC, Hermens WT et al (1992) Clustering of lipid-bound annexin V may explain its anticoagulant effect. J Biol Chem 267(25):17907–17912

    PubMed  CAS  Google Scholar 

  31. Dasgupta SK, Guchhait P, Thiagarajan P (2006) Lactadherin binding and phosphatidylserine expression on cell surface-comparison with annexin A5. Transl Res J Lab Clin Med 148(1):19–25. doi:10.1016/j.lab.2006.03.006

    Article  CAS  Google Scholar 

  32. Waehrens LN, Heegaard CW, Gilbert GE, Rasmussen JT (2009) Bovine lactadherin as a calcium-independent imaging agent of phosphatidylserine expressed on the surface of apoptotic HeLa cells. J Histochem Cytochem Off J Histochem Soc 57(10):907–914. doi:10.1369/jhc.2009.953729

    Article  CAS  Google Scholar 

  33. Andersen MH, Berglund L, Petersen TE, Rasmussen JT (2002) Annexin-V binds to the intracellular part of the beta(5) integrin receptor subunit. Biochem Biophys Res Commun 292(2):550–557. doi:10.1006/bbrc.2002.6673

    Article  PubMed  CAS  Google Scholar 

  34. Xiong C, Brewer K, Song S et al (2011) Peptide-based imaging agents targeting phosphatidylserine for the detection of apoptosis. J Med Chem 54(6):1825–1835. doi:10.1021/jm101477d

    Article  PubMed  CAS  Google Scholar 

  35. Hanshaw RG, Smith BD (2005) New reagents for phosphatidylserine recognition and detection of apoptosis. Bioorg Med Chem 13(17):5035–5042. doi:10.1016/j.bmc.2005.04.071

    Article  PubMed  CAS  Google Scholar 

  36. Koulov AV, Stucker KA, Lakshmi C, Robinson JP, Smith BD (2003) Detection of apoptotic cells using a synthetic fluorescent sensor for membrane surfaces that contain phosphatidylserine. Cell Death Differ 10(12):1357–1359. doi:10.1038/sj.cdd.4401315

    Article  PubMed  CAS  Google Scholar 

  37. DiVittorio KM, Johnson JR, Johansson E, Reynolds AJ, Jolliffe KA, Smith BD (2006) Synthetic peptides with selective affinity for apoptotic cells. Org Biomol Chem 4(10):1966–1976. doi:10.1039/b514748d

    Article  PubMed  CAS  Google Scholar 

  38. Nyegaard S, Novakovic VA, Rasmussen JT, Gilbert GE (2013) Lactadherin inhibits secretory phospholipase A2 activity on pre-apoptotic leukemia cells. PLoS One 8(10):e77143

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Yeung T, Gilbert GE, Shi J, Silvius J, Kapus A, Grinstein S (2008) Membrane phosphatidylserine regulates surface charge and protein localization. Science 319(5860):210–213. doi:10.1126/science.1152066

    Article  PubMed  CAS  Google Scholar 

  40. Fairn GD, Schieber NL, Ariotti N et al (2011) High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine. J Cell Biol 194(2):257–275. doi:10.1083/jcb.201012028

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 1820(7):940–948. doi:10.1016/j.bbagen.2012.03.017

    Article  PubMed  CAS  Google Scholar 

  42. Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9(8):581–593. doi:10.1038/nri2567

    Article  PubMed  Google Scholar 

  43. Vikerfors A, Mobarrez F, Bremme K et al (2012) Studies of microparticles in patients with the antiphospholipid syndrome (APS). Lupus 21(7):802–805. doi:10.1177/0961203312437809

    Article  PubMed  CAS  Google Scholar 

  44. Zachau AC, Landén M, Mobarrez F, Nybom R, Wallén H, Wetterberg L (2012) Leukocyte-derived microparticles and scanning electron microscopic structures in two fractions of fresh cerebrospinal fluid in amyotrophic lateral sclerosis: a case report. J Med Case Reports 6(1):274. doi:10.1186/1752-1947-6-274

    Article  Google Scholar 

  45. Mobarrez F, Nybom R, Johansson V et al (2013) Microparticles and microscopic structures in three fractions of fresh cerebrospinal fluid in schizophrenia: case report of twins. Schizophr Res 143(1):192–197. doi:10.1016/j.schres.2012.10.030

    Article  PubMed  Google Scholar 

  46. Fadeel B, Orrenius S (2005) Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 258(6):479–517. doi:10.1111/j.1365-2796.2005.01570.x

    Article  PubMed  CAS  Google Scholar 

  47. Waehrens LN, Rasmussen JT, Heegaard CW, Falborg L (2007) Preparation and in vitro evaluation of 99mTc-labelled bovine lactadherin as a novel radioligand for apoptosis detection. J Label Compd Radiopharm 50(4):211–217. doi:10.1002/jlcr.1207

    Article  CAS  Google Scholar 

  48. Falborg L, Waehrens LN, Alsner J et al (2010) Biodistribution of 99mTc-HYNIC-lactadherin in mice–a potential tracer for visualizing apoptosis in vivo. Scand J Clin Lab Invest 70(3):209–216. doi:10.3109/00365511003663648

    Article  PubMed  CAS  Google Scholar 

  49. Poulsen RH, Rasmussen JT, Ejlersen JA et al (2013) Pharmacokinetics of the phosphatidylserine tracers 99mTc-lactadherin and 99mTc-annexin V in pigs. EJNMMI Res 3(1):15. doi:10.1186/2191-219X-3-15

    Article  PubMed Central  PubMed  Google Scholar 

  50. Gao C, Xie R, Li W et al (2013) Endothelial cell phagocytosis of senescent neutrophils decreases procoagulant activity. Thromb Haemost 109(6):1079–1090. doi:10.1160/TH12-12-0894

    Article  PubMed  CAS  Google Scholar 

  51. Pedersen SS, Keller AK, Nielsen MK et al (2013) Cell injury after ischemia and reperfusion in the porcine kidney evaluated by radiolabelled microspheres, sestamibi, and lactadherin. EJNMMI Res 3(1):62. doi:10.1186/2191-219X-3-62

    Article  PubMed Central  PubMed  Google Scholar 

  52. Poulsen RH, Rasmussen JT, Bøtker HE et al (2013) Imaging the myocardium at risk with 99mTc-lactadherin administered after reperfusion in a porcine model. Nucl Med Biol 41(1):114–119

    Article  PubMed  Google Scholar 

  53. Bobrie A, Théry C (2013) Exosomes and communication between tumours and the immune system: are all exosomes equal? Biochem Soc Trans 41(1):263–267. doi:10.1042/BST20120245

    Article  PubMed  CAS  Google Scholar 

  54. Kooijmans SAA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM (2012) Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine 7:1525–1541. doi:10.2147/IJN.S29661

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Delcayre A, Estelles A, Sperinde J et al (2005) Exosome display technology: applications to the development of new diagnostics and therapeutics. Blood Cells Mol Dis 35(2):158–168. doi:10.1016/j.bcmd.2005.07.003

    Article  PubMed  CAS  Google Scholar 

  56. Hartman ZC, Wei J, Glass OK et al (2011) Increasing vaccine potency through exosome antigen targeting. Vaccine 29(50):9361–9367. doi:10.1016/j.vaccine.2011.09.133

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Zeelenberg IS, Ostrowski M, Krumeich S et al (2008) Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses. Cancer Res 68(4):1228–1235. doi:10.1158/0008-5472.CAN-07-3163

    Article  PubMed  CAS  Google Scholar 

  58. Bavarian Nordic (2013) MVA-BN® PRO http://www.bavarian-nordic.com/pipeline/mva-bn-pro.aspx. Httpwwwbavarian-Nord-Bn-Proaspx. Available at: http://www.bavarian-nordic.com/pipeline/mva-bn-pro.aspx. Accessed 1 Aug 2013

  59. Rountree RB, Mandl SJ, Nachtwey JM et al (2011) Exosome targeting of tumor antigens expressed by cancer vaccines can improve antigen immunogenicity and therapeutic efficacy. Cancer Res 71(15):5235–5244. doi:10.1158/0008-5472.CAN-10-4076

    Article  PubMed  CAS  Google Scholar 

  60. Takahashi Y, Nishikawa M, Shinotsuka H et al (2013) Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol 165(2):77–84. doi:10.1016/j.jbiotec.2013.03.013

    Article  PubMed  CAS  Google Scholar 

  61. Stassen JM, Arnout J, Deckmyn H (2004) The hemostatic system. Curr Med Chem 11(17):2245–2260

    Article  PubMed  CAS  Google Scholar 

  62. Gilbert GE, Arena AA (1996) Activation of the factor VIIIa-factor IXa enzyme complex of blood coagulation by membranes containing phosphatidyl-L-serine. J Biol Chem 271(19):11120–11125

    Article  PubMed  CAS  Google Scholar 

  63. Lentz BR (2003) Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Prog Lipid Res 42(5):423–438

    Article  PubMed  CAS  Google Scholar 

  64. Lhermusier T, Chap H, Payrastre B (2011) Platelet membrane phospholipid asymmetry: from the characterization of a scramblase activity to the identification of an essential protein mutated in Scott syndrome. J Thromb Haemost 9(10):1883–1891. doi:10.1111/j.1538-7836.2011.04478.x

    Article  PubMed  CAS  Google Scholar 

  65. Cederholm A, Frostegård J (2007) Annexin A5 multitasking: a potentially novel antiatherothrombotic agent? Drug News Perspect 20(5):321–326. doi:10.1358/dnp.2007.20.5.1120220

    Article  PubMed  CAS  Google Scholar 

  66. Tzima E, Walker JH (2000) Platelet annexin V: the ins and outs. Platelets 11(5):245–251

    Article  PubMed  CAS  Google Scholar 

  67. Haynes LM, Dubief YC, Mann KG (2012) Membrane binding events in the initiation and propagation phases of tissue factor-initiated zymogen activation under flow. J Biol Chem 287(8):5225–5234. doi:10.1074/jbc.M111.302075

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Bevers EM, Comfurius P, van Rijn JL, Hemker HC, Zwaal RF (1982) Generation of prothrombin-converting activity and the exposure of phosphatidylserine at the outer surface of platelets. Eur J Biochem 122(2):429–436

    Article  PubMed  CAS  Google Scholar 

  69. Williamson P, Bevers EM, Smeets EF, Comfurius P, Schlegel RA, Zwaal RF (1995) Continuous analysis of the mechanism of activated transbilayer lipid movement in platelets. Biochemistry (Mosc) 34(33):10448–10455

    Article  CAS  Google Scholar 

  70. Shi J, Pipe SW, Rasmussen JT, Heegaard CW, Gilbert GE (2008) Lactadherin blocks thrombosis and hemostasis in vivo: correlation with platelet phosphatidylserine exposure. J Thromb Haemost 6(7):1167–1174. doi:10.1111/j.1538-7836.2008.03010.x

    Article  PubMed  CAS  Google Scholar 

  71. Albanyan A-M, Murphy MF, Rasmussen JT, Heegaard CW, Harrison P (2009) Measurement of phosphatidylserine exposure during storage of platelet concentrates using the novel probe lactadherin: a comparison study with annexin V. Transfusion (Paris) 49(1):99–107. doi:10.1111/j.1537-2995.2008.01933.x

    Article  Google Scholar 

  72. Hou J, Fu Y, Zhou J et al (2011) Lactadherin functions as a probe for phosphatidylserine exposure and as an anticoagulant in the study of stored platelets. Vox Sang 100(2):187–195. doi:10.1111/j.1423-0410.2010.01375.x

    Article  PubMed  CAS  Google Scholar 

  73. Dasgupta SK, Argaiz ER, Mercado JEC et al (2010) Platelet senescence and phosphatidylserine exposure. Transfusion (Paris) 50(10):2167–2175. doi:10.1111/j.1537-2995.2010.02676.x

    Article  CAS  Google Scholar 

  74. Van der Wal DE, DU VX, Lo KSL, Rasmussen JT, Verhoef S, Akkerman JWN (2010) Platelet apoptosis by cold-induced glycoprotein Ibα clustering. J Thromb Haemost 8(11):2554–2562. doi:10.1111/j.1538-7836.2010.04043.x

    Article  PubMed  Google Scholar 

  75. Lu C, Shi J, Yu H, Hou J, Zhou J (2011) Procoagulant activity of long-term stored red blood cells due to phosphatidylserine exposure. Transfus Med Oxf Engl 21(3):150–157. doi:10.1111/j.1365-3148.2010.01063.x

    Article  CAS  Google Scholar 

  76. Lü C, Yu H, Hou J, Zhou J (2008) Increased procoagulant activity of red blood cells in the presence of cisplatin. Chin Med J (Engl) 121(18):1775–1780

    Google Scholar 

  77. Fu Y, Zhou J, Li H et al (2010) Daunorubicin induces procoagulant activity of cultured endothelial cells through phosphatidylserine exposure and microparticles release. Thromb Haemost 104(6):1235–1241. doi:10.1160/TH10-02-0102

    Article  PubMed  CAS  Google Scholar 

  78. Zhou J, Shi J, Hou J et al (2010) Phosphatidylserine exposure and procoagulant activity in acute promyelocytic leukemia. J Thromb Haemost 8(4):773–782. doi:10.1111/j.1538-7836.2010.03763.x

    Article  PubMed  CAS  Google Scholar 

  79. Mobarrez F, He S, Bröijersen A et al (2011) Atorvastatin reduces thrombin generation and expression of tissue factor, P-selectin and GPIIIa on platelet-derived microparticles in patients with peripheral arterial occlusive disease. Thromb Haemost 106(2):344–352. doi:10.1160/TH10-12-0810

    Article  PubMed  CAS  Google Scholar 

  80. Gao C, Xie R, Yu C et al (2012) Procoagulant activity of erythrocytes and platelets through phosphatidylserine exposure and microparticles release in patients with nephrotic syndrome. Thromb Haemost 107(4):681–689. doi:10.1160/TH11-09-0673

    Article  PubMed  CAS  Google Scholar 

  81. Mobarrez F, Mikovic D, Antovic A, Antovic JP (2013) Is a decrease of microparticles related to improvement of hemostasis after FVIII injection in hemophilia A patients treated on demand? J Thromb Haemost 11(4):697–703. doi:10.1111/jth.12103

    Article  PubMed  CAS  Google Scholar 

  82. Tan X, Shi J, Fu Y et al (2013) Role of erythrocytes and platelets in the hypercoagulable status in polycythemia vera through phosphatidylserine exposure and microparticle generation. Thromb Haemost 109(6):1025–1032. doi:10.1160/TH12-11-0811

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Trige Rasmussen PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blans, K., Rasmussen, J.T. (2014). MFG-E8 as a Marker for Apoptotic, Stressed and Activated Cells. In: Wang, P. (eds) MFG-E8 and Inflammation. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8765-9_2

Download citation

Publish with us

Policies and ethics