Skip to main content

Biogenesis of Chloroplasts

  • Chapter
  • First Online:
The Structural Basis of Biological Energy Generation

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 39))

  • 2550 Accesses

Summary

Chloroplasts belong to a diverse family of plant organelles called plastids that perform essential functions, including important steps in many biosynthetic pathways. All plastids differentiate from proplastids through a complex process, in which numerous events must be coordinated and integrated into the overall developmental pathway of the cell. Due to the overwhelming importance of chloroplasts as sites of oxygenic photosynthesis the differentiation of chloroplasts from proplastids has been most studied. Chloroplast biogenesis begins with the perception of light, which triggers the coordinated expression of genetic information contained in both the nuclear and plastid genomes. Subsequently the chloroplast protein import machinery plays a major role in organelle biogenesis, mediating the import of nuclear-encoded proteins into the organelle. This process is challenged by the complex organization of the chloroplast sub-compartments. The conversion of sunlight into chemical energy by the photosynthetic machinery requires thylakoid membranes, a specialized membrane system found in chloroplasts, and this process involving a complex cascade of biochemical and structural events. Here we will address the major molecular events following the initiation of chloroplast biogenesis, culminating in the formation of the mature chloroplast and the segregation of plastids to daughter cells during cell division.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARC:

– Accumulation and replication of chloroplast;

ATP:

– Adenosine-5’-triphosphate;

Cry:

– Cryptochromes;

GTP:

– Guanosine-5’-triphosphate;

LHCII:

– Light harvesting complex II;

NADPH:

– Nicotinamide adenine dinucleotide phosphate;

NEP:

– Nuclear encoded polymerase;

PDV:

– Plastid division proteins;

PEP:

– Plastid encoded polymerase;

PIFs:

– phytochrome-interacting factor;

PSI:

– Photosystem I;

PSII:

– Photosystem II;

TIC:

– Translocon at the inner envelope membrane of chloroplasts;

TOC:

– Translocon at the outer envelope membrane of chloroplasts;

VIPP:

– Vesicle-inducing protein in plastids

References

  • Adam Z, Charuvi D, Tsabari O, Knopf RR, Reich Z (2010) Biogenesis of thylakoid networks in angiosperms: knowns and unknowns. Plant Mol Biol. doi:10.1007/s11103-010-9693-5

    PubMed  Google Scholar 

  • Al-Sady B, Ni W, Kircher S, Schafer E, Quail PH (2006) Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol Cell 23:439–446

    Article  CAS  PubMed  Google Scholar 

  • Asano T, Yoshioka Y, Kurei S, Sakamoto W, Machida Y (2004) A mutation of the CRUMPLED LEAF gene that encodes a protein localized in the outer envelope membrane of plastids affects the pattern of cell division, cell differentiation, and plastid division in Arabidopsis. Plant J 38:448–459

    Article  CAS  PubMed  Google Scholar 

  • Austin J II, Webber AN (2005) Photosynthesis in Arabidopsis thaliana mutants with reduced chloroplast number. Photosynth Res 85:373–384

    Article  CAS  Google Scholar 

  • Azevedo J, Courtois F, Hakimi MA, Demarsy E, Lagrange T, Alcaraz JP, Jaiswal P, Marechal-Drouard L, Lerbs-Mache S (2008) Intraplastidial trafficking of a phage-type RNA polymerase is mediated by a thylakoid RING-H2 protein. Proc Natl Acad Sci U S A 105:9123–9128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bauer J, Chen K, Hiltbunner A, Wehrli E, Eugster M, Schnell D, Kessler F (2000) The major protein import receptor of plastids is essential for chloroplast biogenesis. Nature 403:203–207

    Article  CAS  PubMed  Google Scholar 

  • Block MA, Dorne AJ, Joyard J, Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts II. Biochemical characterization. J Biol Chem 258:13281–13286

    CAS  PubMed  Google Scholar 

  • Bohne AV, Weihe A, Borner T (2009) Transfer RNAs inhibit Arabidopsis phage-type RNA polymerases. Endocytobiosis Cell Res 19:63–69, 7p

    Google Scholar 

  • Castillon A, Shen H, Huq E (2007) Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci 12:514–521

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Asano T, Fujiwara MT, Yoshida S, Machida Y, Yoshioka Y (2009) Plant cells without detectable plastids are generated in the crumpled leaf mutant of Arabidopsis thaliana. Plant Cell Physiol 50:956–969

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Galvao RM, Li M, Burger B, Bugea J, Bolado J, Chory J (2010) Arabidopsis HEMERA/pTAC12 initiates photomorphogenesis by phytochromes. Cell 141:1230–1240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chory J (2010) Light signal transduction: an infinite spectrum of possibilities. Plant J 61:982–991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chou ML, Fitzpatrick LM, Tu SL, Budziszewski G, Potter-Lewis S, Akita M, Levin JZ, Keegstra K, Li HM (2003) Tic40, a membrane-anchored co-chaperone homolog in the chloroplast protein translocon. EMBO J 22:2970–2980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Colletti KS, Tattersall EA, Pyke KA, Froelich JE, Stokes KD, Osteryoung KW (2000) A homologue of the bacterial cell division site-determining factor MinD mediates placement of the chloroplast division apparatus. Curr Biol 10:507–516

    Article  CAS  PubMed  Google Scholar 

  • Constan D, Froehlich JE, Rangarajan S, Keegstra K (2004) A stromal Hsp100 protein is required for normal chloroplast development and function in Arabidopsis. Plant Physiol 136:3605–3615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cran DG, Possingham JV (1972) Variation of plastid types in spinach. Protoplasma 74:345–356

    Article  Google Scholar 

  • Fujiwara M, Nagashima A, Kanamaru K, Tanaka K, Takahashi H (2000) Three new nuclear genes, sigD, sigE and sigF, encoding putative plastid RNA polymerase sigma factors in Arabidopsis thaliana. FEBS Lett 481:47–52

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Kadirjan-Kalbach D, Froehlich JE, Osteryoung KW (2003) ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc Natl Acad Sci U S A 100:4328–4333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glynn JM, Froehlich JE, Osteryoung KW (2008) Arabidopsis ARC6 coordinates the division machineries of the inner and outer chloroplast membranes through interaction with PDV2 in the intermembrane space. Plant Cell 20:2460–2470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glynn JM, Yang Y, Vitha S, Schmitz AJ, Hemmes M, Miyagishima SY, Osteryoung KW (2009) PARC6, a novel chloroplast division factor, influences FtsZ assembly and is required for recruitment of PDV1 during chloroplast division in Arabidopsis. Plant J 59:700–711

    Article  CAS  PubMed  Google Scholar 

  • Hajdukiewicz PT, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanaoka M, Kanamaru K, Fujiwara M, Takahashi H, Tanaka K (2005) Glutamyl-tRNA mediates a switch in RNA polymerase use during chloroplast biogenesis. EMBO Rep 6:545–550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hinnah SC, Wagner R, Sveshnikova N, Harrer R, Soll J (2002) The chloroplast protein import channel Toc75: pore properties and interaction with transit peptides. Biophys J 83:899–911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horton P, Ruban AV, Rees D, Pascal AA, Noctor G, Young AJ (1991) Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein complex. FEBS Lett 292:1–4

    Article  CAS  PubMed  Google Scholar 

  • Inaba T, Li M, Alvarez-Huerta M, Kessler F, Schnell DJ (2003) atTic110 functions as a scaffold for coordinating the stromal events of protein import into chloroplasts. J Biol Chem 278:38617–38627

    Article  CAS  PubMed  Google Scholar 

  • Isono K, Shimizu M, Yoshimoto K, Niwa Y, Satoh K, Yokota A, Kobayashi H (1997) Leaf-specifically expressed genes for polypeptides destined for chloroplasts with domains of sigma70 factors of bacterial RNA polymerases in Arabidopsis thaliana. Proc Natl Acad Sci U S A 94:14948–14953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ivanova Y, Smith MD, Chen K, Schnell DJ (2004) Members of the Toc159 import receptor family represent distinct pathways for protein targeting to plastids. Mol Biol Cell 15:3379–3392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kakizaki T, Inaba T (2010) New insights into the retrograde signaling pathway between the plastids and the nucleus. Plant Signal Behav 5:196–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kessler F, Blobel G, Patel HA, Schnell DJ (1994) Identification of two GTP-binding proteins in the chloroplast protein import machinery. Science 266:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Vothknecht UC, Soll J, Westhoff P (2001) VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc Natl Acad Sci U S A 98:4238–4242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kubis S, Baldwin A, Patel R, Razzaq A, Dupree P, Lilley K, Kurth J, Leister D, Jarvis P (2003) The Arabidopsis pp i1 mutant is specifically defective in the expression, chloroplast import, and accumulation of photosynthetic proteins. Plant Cell 15:1859–1871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Juez E, Dillon E, Magyar Z, Khan S, Hazeldine S, de Jager SM, Murray JA, Beemster GT, Bogre L, Shanahan H (2008) Distinct light-initiated gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis. Plant Cell 20:947–968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lubeck J, Soll J, Akita M, Nielsen E, Keegstra K (1996) Topology of IEP110, a component of the chloroplastic protein import machinery present in the inner envelope membrane. EMBO J 15:4230–4238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng XW (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13:2589–2607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maple J, Chua NH, Moller SG (2002) The topological specificity factor AtMinE1 is essential for correct plastid division site placement in Arabidopsis. Plant J 31:269–277

    Article  CAS  PubMed  Google Scholar 

  • Marrison JL, Rutherford SM, Robertson EJ, Lister C, Dean C, Leech RM (1999) The distinctive roles of five different ARC genes in the chloroplast division process in Arabidopsis. Plant J 18:651–662

    Article  CAS  PubMed  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 99:12246–12251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McFadden GI (2001) Chloroplast origin and integration. Plant Physiol 125:50–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miras S, Salvi D, Piette L, Seigneurin-Berny D, Grunwald D, Reinbothe C, Joyard J, Reinbothe S, Rolland N (2007) Toc159- and Toc75-independent import of a transit sequence-less precursor into the inner envelope of chloroplasts. J Biol Chem 282:29482–29492

    Article  CAS  PubMed  Google Scholar 

  • Miyagishima SY, Froehlich JE, Osteryoung KW (2006) PDV1 and PDV2 mediate recruitment of the dynamin-related protein ARC5 to the plastid division site. Plant Cell 18:2517–2530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morre DJ, Sellden G, Sundqvist C, Sandelius AS (1991) Stromal low temperature compartment derived from the inner membrane of the chloroplast envelope. Plant Physiol 97:1558–1564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ni M, Tepperman JM, Quail PH (1998) PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95:657–667

    Article  CAS  PubMed  Google Scholar 

  • Ni M, Tepperman JM, Quail PH (1999) Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400:781–784

    Article  CAS  PubMed  Google Scholar 

  • Okazaki K, Kabeya Y, Suzuki K, Mori T, Ichikawa T, Matsui M, Nakanishi H, Miyagishima SY (2009) The PLASTID DIVISION1 and 2 components of the chloroplast division machinery determine the rate of chloroplast division in land plant cell differentiation. Plant Cell 21:1769–1780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Osterlund MT, Wei N, Deng XW (2000) The roles of photoreceptor systems and the COP1-targeted destabilization of HY5 in light control of Arabidopsis seedling development. Plant Physiol 124:1520–1524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Osteryoung KW, Stokes KD, Rutherford SM, Percival AL, Lee WY (1998) Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ. Plant Cell 10:1991–2004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pfalz J, Liere K, Kandlbinder A, Dietz KJ, Oelmuller R (2006) pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18:176–197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pyke KA (1999) Plastid division and development. Plant Cell 11:549–556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quail PH (2002) Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3:85–93

    Article  CAS  PubMed  Google Scholar 

  • Raynaud C, Perennes C, Reuzeau C, Catrice O, Brown S, Bergounioux C (2005) Cell and plastid division are coordinated through the prereplication factor AtCDT1. Proc Natl Acad Sci U S A 102:8216–8221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson C, Thompson SJ, Woolhead C (2001) Multiple pathways used for the targeting of thylakoid proteins in chloroplasts. Traffic 2:245–251

    Article  CAS  PubMed  Google Scholar 

  • Saijo Y, Sullivan JA, Wang H, Yang J, Shen Y, Rubio V, Ma L, Hoecker U, Deng XW (2003) The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev 17:2642–2647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schroeder DF, Gahrtz M, Maxwell BB, Cook RK, Kan JM, Alonso JM, Ecker JR, Chory J (2002) De-etiolated 1 and damaged DNA binding protein 1 interact to regulate Arabidopsis photomorphogenesis. Curr Biol 12:1462–1472

    Article  CAS  PubMed  Google Scholar 

  • Shiina T, Tsunoyama Y, Nakahira Y, Khan MS (2005) Plastid RNA polymerases, promoters, and transcription regulators in higher plants. Int Rev Cytol 244:1–68

    Article  CAS  PubMed  Google Scholar 

  • Shimoni E, Rav-Hon O, Ohad I, Brumfeld V, Reich Z (2005) Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography. Plant Cell 17:2580–2586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simidjiev I, Stoylova S, Amenitsch H, Javorfi T, Mustardy L, Laggner P, Holzenburg A, Garab G (2000) Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc Natl Acad Sci U S A 97:1473–1476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sperling U, Franck F, van Cleve B, Frick G, Apel K, Armstrong GA (1998) Etioplast differentiation in Arabidopsis: both PORA and PORB restore the prolamellar body and photoactive protochlorophyllide-F655 to the cop1 photomorphogenic mutant. Plant Cell 10:283–296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sugita M, Sugiura M (1996) Regulation of gene expression in chloroplasts of higher plants. Plant Mol Biol 32:315–326

    Article  CAS  PubMed  Google Scholar 

  • Tetlow IJ, Rawsthorne S, Rines C, Emes MJ (2005) Plastid metabolic pathways. In: Moller SG (ed) Plastids. Blackwell, Oxford, pp 60–109

    Google Scholar 

  • Vitha S, Froehlich JE, Koksharova O, Pyke KA, van Erp H, Osteryoung KW (2003) ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2. Plant Cell 15:1918–1933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • von Arnim A, Deng XW (1996) Light control of seedling development. Annu Rev Plant Physiol Plant Mol Biol 47:215–243

    Article  Google Scholar 

  • Vothknecht UC, Westhoff P (2001) Biogenesis and origin of thylakoid membranes. Biochim Biophys Acta 1541:91–101

    Article  CAS  PubMed  Google Scholar 

  • Waters MT, Moylan EC, Langdale JA (2008) GLK transcription factors regulate chloroplast development in a cell-autonomous manner. Plant J 56:432–444

    Article  CAS  PubMed  Google Scholar 

  • Westphal S, Heins L, Soll U, Vothknecht UC (2001) Vipp1 deletion mutant of Synechocystis: a connection between bacterial phage shock and thylakoid biogenesis. Proc Natl Acad Sci U S A 98:4243–4248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yanagawa Y, Sullivan JA, Komatsu S, Gusmaroli G, Suzuki G, Yin J, Ishibashi T, Saijo Y, Rubio V, Kimura S, Wang J, Deng XW (2004) Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes. Genes Dev 18:2172–2181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Plastid division research in our laboratory is funded by the Norwegian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Geir Møller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Møller, S.G., Maple, J., Gargano, D. (2014). Biogenesis of Chloroplasts. In: Hohmann-Marriott, M. (eds) The Structural Basis of Biological Energy Generation. Advances in Photosynthesis and Respiration, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8742-0_23

Download citation

Publish with us

Policies and ethics