Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 39))

Summary

Green algae have been treated for a long time as “free living choroplasts” and therefore used as model organisms in photosynthesis research. However, recent progress has provided evidence that they have a paraphyletic origin, resulting in a wide array of different evolutionary lineages. This diversity opens the opportunity to utilise green algae not only for the production of bulk biomass, but also for the extraction of specific biotechnological compounds. This chapter gives an overview of the taxonomic, structural, biochemical, molecular and physiological features of those species which are the most widely used in algal biomass technologies. Based on this description, we suggest how green algal biodiversity and metabolic pathways can be exploited in the future for biological energy generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AX:

– Astaxanthin

CAN:

– Cantaxanthin

CAR:

– β-carotene

Chl:

– Chlorophyll

ITS:

– Internal transcribe spacer (commonly referring to the ribosomal rRNA operon)

LUT:

– Lutein

Mya:

– Million years ago

ROS:

– Reactive oxygen species

VDE:

– Violaxanthin de-epoxidase

ZEA:

– Zeaxanthin

References

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup Ø, Mozley-Standrige SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Euk Microbiol 52:399–451

    PubMed  Google Scholar 

  • Agrawal S, Striepen B (2010) More membranes, more proteins: complex protein import mechanisms into secondary plastids. Protist 161:672–687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Archibald JM, Lane CE (2009) Going, going, not quite gone: nucleomorphs as a case study in nuclear genome reduction. J Heredity 100:582

    CAS  Google Scholar 

  • Asada K (2000) The water-water cycle as alternative photon and electron sinks. Philos Trans R Soc Lond B Biol Sci 355:1419–1431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashokkumar V, Rengasamy R (2011) Mass culture of Botryococcus braunii under open raceway pond for biofuel production. Bioresource Techn 104:394–399

    Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechn 22:245–279

    CAS  Google Scholar 

  • Bayramoglu G, Arica MY (2011) Preparation of a composite biosorbent using Scenedesmus quadricauda biomass and alginate/polyvinyl alcohol for removal of Cu(II) and Cd(II) ions: isotherms, kinetics, and thermodynamic studies. Wat Air Soil Poll 221:391–403

    CAS  Google Scholar 

  • Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechn 142:70–77

    CAS  Google Scholar 

  • Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci USA 79:4352–4356

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bennoun P (2002) The present model of chlororespiration. Photosynth Res 73:273–277

    CAS  PubMed  Google Scholar 

  • Brown AC, Knights BA (1969) Hydrocarbon content and its relationship to physiological state in the green alga Botryococcus braunii. Phytochem 8:543–547

    CAS  Google Scholar 

  • Bock C, Pröschold T, Krienitz L (2011) Updating the genus Dictyosphaerium and description of Mucidosphaerium gen. nov. (Trebouxiophyceae) based on morphological and molecular data. J Phycol 47:638–652

    CAS  Google Scholar 

  • Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and function of plant isoprenoids. Progr Lipid Res 44:357–492

    CAS  Google Scholar 

  • de Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Biores Techn 101:1611–1627

    Google Scholar 

  • Casadevall D, Dif D, Largeau C, Gudin C, Chaumont D, Desanti O (1985) Studies on batch and continuous cultures of Botryococcus braunii: hydrocarbon production in relation to physiological state, cell ultrastructure and phosphate nutrition. Biotechnol Bioeng 27:286–295

    CAS  PubMed  Google Scholar 

  • Cha TS, Yee W, Aziz A (2012) Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris. World J Microbiol Biotechnol 28:1771–1779

    CAS  PubMed  Google Scholar 

  • Coll JM (2006) Methodologies for transferring DNA into eukaryotic microalgae. S J Agricult Res 4:316–330

    Google Scholar 

  • Collins AM, Jones HDT, Han D, Hu Q, Hu Q, Beechem TE, Timlin JA (2011) Carotenoid distribution in living cells of Haematococcus pluvialis (Chlorophyceae). PLoS ONE 6(9):e24302

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coragliotti AT, Beligni MV, Franklin SE, Mayfield SP (2011) Molecular factors affecting the accumulation of recombinant proteins in the Chlamydomonas reinhardtii chloroplast. Mol Biotechnol 48:60–75

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chretiennot-Dinet MJ, Courties C, Vaquer A, Neveux J, Claustre H, Lautier J, Machado MC (1995) A new marine picoeukaryote – Ostreococcus tauri gen et sp. nov. (Chlorophyta, Prasinophyceae). Phycologia 34:285–292

    Google Scholar 

  • Darienko T, Gustavs L, Mudimu O, Menendez CR, Schumann R, Karsten U, Friedl T, Proeschold T (2010) Chloroidium, a common terrestrial coccoid green alga previously assigned to Chlorella (Trebouxiophyceae, Chlorophyta). Eur J Phycol 45:79–95

    CAS  Google Scholar 

  • Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531

    Google Scholar 

  • Dawson HN, Burlingame R, Cannons AC (1997) Stable transformation of Chlorella: rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Curr Microbiol 35:356–362

    CAS  PubMed  Google Scholar 

  • Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol 137:545–556

    CAS  PubMed Central  PubMed  Google Scholar 

  • Derenne S, Largeau C, Berkaloff C, Rousseau B, Wilhelm C, Hatcher PG (1992) Non-hydrolysable macromolecular constituents from outer walls of Chlorella fusca and Nanochlorum eukaryotum. Phytochemistry 31:1923–1929

    CAS  Google Scholar 

  • De Wever A, Leliaert F, Verleyen E, Vanormelingen P, van der Gucht K, Hodgson DA, Sabbe K, Vyverman W (2009) Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proc Biol Sci 276:3591–3599

    PubMed Central  PubMed  Google Scholar 

  • Ebersold WT (1962) Biochemical genetics. In: Lewin RA (ed) Biochemistry and physiology of algae. Academic Press, New York, pp 731–739

    Google Scholar 

  • Egeland ES, Guillard RRL, Liaaen-Jensen S (1997) Additional carotenoid prototype representatives and a general chemosystematic evaluation of carotenoids in Prasinophyceae (Chlorophyta). Phytochem 44:1087–1097

    CAS  Google Scholar 

  • Elias M, Archibald JM (2009) Sizing up the genomic footprint of endosymbiosis. BioEssays 31:1273–1279

    CAS  PubMed  Google Scholar 

  • Ettl H (1980) Grundriss der allgemeinen Algologie. VEB Gustav Fischer Verlag, Jena

    Google Scholar 

  • Falkowski PG, Knoll AH (2007) Evolution of primary producers in the sea. Academic, Waltham

    Google Scholar 

  • Fan L, Vonshak A, Gabbay R, Hirschberg J, Cohen Z, Boussiba S (1995) The biosynthetic pathway of astaxanthin in a green alga Haematococcus pluvialis as indicated by inhibition with dephenylamine. Plant Cell Physiol 36:1519–1524

    CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    CAS  PubMed  Google Scholar 

  • Fassett RG, Coombes JS (2011) Astaxanthin: a potential therapeutic agent in cardiovascular disease. Marine Drugs 9:447–465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fawley MW, Fawley KP, Buchheim MA (2004) Molecular diversity among communities of freshwater microchlorophytes. Microbial Ecol 48:489–499

    CAS  Google Scholar 

  • Feng P, Deng Z, Hu Z, Lu F (2011) Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresour Technol 102:10577–10584

    CAS  PubMed  Google Scholar 

  • Ferris PJ, Woessner JP, Waffenschmidt S, Kilz S, Drees J, Goodenough U (2001) Glycosylated polyprolin II rods with kinks as a structural motif in plant hydroyprolin-rich glycoproteins. Biochemistry 40:2978–2987

    CAS  PubMed  Google Scholar 

  • Forti G, Caldiroli G (2005) State transitions in Chlamydomonas reinhardtii. The role of the Mehler reaction in state 2-to state 1 transitions. Plant Physiol 137:492–499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frommolt R, Werner S, Paulsen H, Goss R, Wilhelm C, Zauner S, Maier U, Grossman A, Bhattacharya D, Lohr M (2008) Ancient recruitment by Chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Mol Biol Evol 25:2653–2667

    CAS  PubMed  Google Scholar 

  • Genkov T, Meyer M, Griffiths H, Spreitzer RJ (2010) Functional hybrid rubisco enzymes with plant small subunits and algal large subunits. J Biol Chem 285:19833–19841

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gile GH, Stern RF, James ER, Keeling PJ (2010) DNA barcoding of chlorarachniophytes using nucleomorph ITS sequences. J Phycol 46:743–750

    CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation and evolution. Annu Rev Plant Biol 56:99–131

    CAS  PubMed  Google Scholar 

  • Goldman JC (1979) Outdoor algal mass cultures – applications. Water Res 13:1–19

    Google Scholar 

  • Gontcharov AA (2008) Phylogeny and classification of Zygnematophyceae (Streptophyta): current state of affairs. Fottea 8:87–104

    Google Scholar 

  • Goss R (2003) Substrate specificity of the violaxanthin de-epoxidase of the primitive green alga Mantoniella squamata (Prasinophyceae). Planta 217:801–812

    CAS  PubMed  Google Scholar 

  • Goss R, Böhme K, Wilhelm C (1998) The xanthophyll cycle of Mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin. Planta 205:613–621

    CAS  Google Scholar 

  • Granado-Lorencio F, Herrero-Barbudo C, Acien-Fernandez G (2009) In vitro bioaccesibility of lutein and zeaxanthin from the microalgae Scenedesmus almeriensis. Food Chem 114:747–752

    CAS  Google Scholar 

  • Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174:246–263

    CAS  Google Scholar 

  • Gressel J, Chen O, Einbinder S, Eisenstadt S, Schatz D, Schlesinger A (2010) Transgenically domesticating marine micro-algae for biofuel and feed uses: no competition with crops for land and water. J Biotechn 150:16

    Google Scholar 

  • Grimsley N, Péquin B, Bachy C, Moreau H, Piganeau G (2010) Cryptic sex in the smallest eukaryotic marine alga. Mol Biol Evol 27:47–54

    CAS  PubMed  Google Scholar 

  • Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) (2006) Chlorophylls and bacteriochlorophylls, 1st edn. Springer, Dordrecht

    Google Scholar 

  • Grünewald K, Hirschberg J, Hagen C (2001) Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. J Biol Chem 276:6023–6029

    PubMed  Google Scholar 

  • Guedes AC, Maras HM, Malcata FX (2011) Microalgae as sources of high added-value compounds – a brief review of recent work. Biotechnol Prog 27:597–613

    CAS  PubMed  Google Scholar 

  • Guiry MD, Guiry GM (2012) AlgaeBase [Online]. World-wide electronic publication, National University of Ireland, Galway http://www.algaebase.org. Accessed 14 Mar 2014

  • Harris EH (2008) Chlamydomonas in the laboratory. In: Harris EH (ed) The Chlamydomonas sourcebook: introduction to Chlamydomonas and its laboratory use. Academic, Waltham, pp 241–302

    Google Scholar 

  • Hejazi MA, Wijffels H (2001) Milking of microalgae. Trends Biotechnol 22:189–194

    Google Scholar 

  • Heilmann S, Jader LR, Harned LA (2011) Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products. Appl Energy 88:3286–3290

    CAS  Google Scholar 

  • Huss VAR, Frank C, Hartmann EC, Hirmer M, Kloboucek A, Seidel BM, Wenzeler P, Kessler E (1999) Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J Phycol 35:587–598

    CAS  Google Scholar 

  • Janssen M, de Bresser L, Baijens T, Tramper J, Mur LR, Snel JFH, Wijffesl RH (2000) Scale-up aspects of photobioreactors: effects of mixing induced light/dark cycles. J Appl Phycol 12:225–237

    CAS  Google Scholar 

  • Jayasankar R, Ramamoorthy N (1993) Some observations on the growth of Chlorella salina. Seaweed Res Utiln 16:139–144

    Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Phil Trans R Soc B Biol Sci 365:729–748

    CAS  Google Scholar 

  • Kessler E (1992) Chlorella biochemische Taxonomie einer für Forschung und Biotechnologie wichtigen Gattung einzelliger Grünalgen. Naturwissenschaften 79:260–265

    Google Scholar 

  • Kessler E, Czygan F-C (1970) Physiologische und biochemische Beiträge zur Taxonomie der Gattung Chlorella. Arch Mikrobiol 70:211–216, 1970

    Google Scholar 

  • Kim JI, Shin W, Triemer RE (2010) Multigene analyses of photosynthetic euglenoids and new family. Phacaceae (Euglenales) J Phycol 46:1278–1287

    Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626

    CAS  PubMed  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 87:1228–1232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi M (2003) Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis. Biotechnol Bioproc Eng 8:322–330

    CAS  Google Scholar 

  • Klochkova T, Kang S, Cho G, Pueschel C, West J, Kim G (2006) Biology of a terrestrial green alga, Chlorococcum sp (Chlorococcales, Chlorophyta), collected from the Miruksazi stupa in Korea. Phycologia 45:349–358

    Google Scholar 

  • Krämer P, Wilhelm C, Wild A, Mörschel E, Riehl E (1988) Ultrastructure and freeze fracture studies of the thylakoids of Mantoniella squamata (Prasinophyceae). Protoplasma 147:170–177

    Google Scholar 

  • Kruse O, Hankamer B (2010) Microalgal hydrogen production. Curr Opin Biotechnol 21:238–243

    CAS  PubMed  Google Scholar 

  • Lakaniemi AM, Hulatt CJ, Thomas DN, Tuovinen OH, Puhakka JA (2011) Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnol Biofuels 4:34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Langner U, Jakob T, Stehfest K, Wilhelm C (2009) A complete energy balance for Chlamydomonas reinhardtii and Chlamydomonas acidophila under neutral and extremely acidic growth conditions. Plant Cell Environ 32:250–258

    CAS  PubMed  Google Scholar 

  • Lee JH, Kim YT (2006) Cloning and characterization of the astaxanthin biosynthesis gene cluster from the marine bacterium Paracoccus haeundaensis. Gene 370:86–95

    CAS  PubMed  Google Scholar 

  • Leliaert F, Verbruggen H, Zechman F (2011) Into the deep: new discoveries at the base of green plant phylogeny. Bioessays 33:683–692

    PubMed  Google Scholar 

  • Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46

    Google Scholar 

  • Lemoine Y, Schoefs B (2010) Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106:155–177

    CAS  PubMed  Google Scholar 

  • Leon R, Couso I, Fernández E (2007) Metabolic engineering of ketocarotenoids biosynthesis in the unicellular microalga Chlamydomonas reinhardtii. J Biotechnol 130:143–152

    CAS  PubMed  Google Scholar 

  • Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556

    PubMed  Google Scholar 

  • Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR (2011) Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Bioresour Technol 102:10861–10867

    CAS  PubMed  Google Scholar 

  • Lien T, Knutsen T (1979) Synchronous growth of Chlamydomonas reinhardtii (Chlorophyceae): a review of optimal conditions. J Phycol 15:191–200

    CAS  Google Scholar 

  • Lorenz RT, Cysewski RG (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    CAS  PubMed  Google Scholar 

  • Lotan T, Hirschberg J (1995) Cloning and expressing in Escherichia coli the gene encoding β-C-4-oxygenase that converts β-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett 364:125–128

    CAS  PubMed  Google Scholar 

  • Lurling M (2001) Grazing associated infochemicals induce colony formation in the green alga Sencedesmus. Protist 152:7–16

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Shinozaki F, Chikuni T, Yabuki A, Takishita K, Kawachi M, Nakayama T, Inouye I, Hashimoto T, Inagaki Y (2011) Green-colored plastids in the dinoflagellate genus Lepidodinium are of core chlorophyte origin. Protist 162:268–276

    PubMed  Google Scholar 

  • Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Plant 226:1075–1086

    CAS  Google Scholar 

  • Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280

    CAS  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    CAS  PubMed  Google Scholar 

  • Mikhailyuk TI, Sluiman HJ, Massalski A, Mudimu O, Demchenko EM, Kondratyuk SY, Friedl T (2008) New streptophyte green algae from terrestrial habitats and an assessment of the genus Interfilum (Klebsormidiophyceae, Streptophyta). J Phycol 44:1586–1603

    Google Scholar 

  • Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2001) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotech J 5:802–814

    Google Scholar 

  • Nakada T, Nozaki H, Pröschold T (2008) Molecular phylogeny, ultrastructure, and taxonomic revision of Chlorogonium (Chlorophyta): emendation of Chlorogonium and description of Gungnir gen. nov. and Rusalka gen. nov. J Phycol 44:751–760

    Google Scholar 

  • Niehaus TD, Okad S, Devarenne TP, Watt DS, Sviripa V, Chapell J (2011) Identification of unique mechanisms for triperterpene biosynthesis in Botryococcus braunii. Proc Natl Acad Sci USA 108:12260–126265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Niklas KJ, Kutschera U (2010) The evolution of the land plant life cycle. New Phytol 185:27–41

    CAS  PubMed  Google Scholar 

  • Oswald W, Golucke C (eds) (1968) Algae, man and the environment. Syracuse University Press, Syracuse

    Google Scholar 

  • Palmucci M, Giordano M (2011) Ecological and evolutionary implications of carbon allocation in marine phytoplankton as a function of nitrogen availability. A Fourier Transform Infrared spectroscopy approach. J Phycol 47:313–323

    Google Scholar 

  • Patron NJ, Waller RF (2007) Transit peptide diversity and divergence: a global analysis of plastid targeting signals. BioEssays 29:1048–1058

    CAS  PubMed  Google Scholar 

  • Pickett-Heaps JD (ed) (1975) Green algae, structure, reproduction and evolution in selected genera. Sinauer Associates, Inc, Sunderland

    Google Scholar 

  • Piganeau G, Eyre-Walker A, Grimsley N, Moreau H (2011) How and why DNA barcodes underestimate the diversity of microbial eukaryotes. PLoS ONE 6:e16342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pocock T, Lachance MA, Proschold T, Priscu C, Kim SS, Huner NPA (2004) Identification of a psychrophilic green alga from Lake Bonney Antarctica: Chlamydomonas raudensis Ettl. (UWO 241) Chlorophyceae. J Phycol 40:1138–1148

    Google Scholar 

  • Potvin G, Zhang Z (2010) Strategies for high-level recombinant protein expression in transgenic microalgae: a Review. Biotechnol Adv 28:910–918

    CAS  PubMed  Google Scholar 

  • Pröschold T, Marin B, Schlosser UG, Melkonian M (2001) Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. Nov. Protist 152:265–300

    PubMed  Google Scholar 

  • Rasala BA, Muto M, Lee PA, Jager M, Cardos R, Behnke CA, Kirk P, Hokanson CA, Crea R, Mendez MS (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechn J 8:719–733

    CAS  Google Scholar 

  • Raven JA (2011) The cost of photoinhibition. Physiol Plant 142:87–104

    CAS  PubMed  Google Scholar 

  • Reiland S, Finazzi G, Endler A et al (2011) Comparative phosphoproteome profiling reveals a function of the STN 8 kinase in fine-tuning of cyclic electron flow. Proc Natl Acad Sci U S A 108:12955–12960

    CAS  PubMed Central  PubMed  Google Scholar 

  • Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40:259–268

    CAS  Google Scholar 

  • Remias D, Schwaiger S, Aigner S, Leya T, Stuppner H, Lütz C (2012) Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol Ecol 79:638–648

    CAS  PubMed  Google Scholar 

  • Rezanka T, Nedbalova L, Sigler K, Cepak V (2008) Identification of astaxanthin di glucoside diesters from snow alga Chlamydomonas nivalis by liquid chromatogrphy-atmospheric pressure chimica ionization mass spectrometry. Phytochem 69:479–490

    CAS  Google Scholar 

  • Rohr J, Sarkar N, Balenger S, Jeong BR, Cerutti H (2004) Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. Plant J 40:611–621

    CAS  PubMed  Google Scholar 

  • Rupprecht J (2009) From systems biology to fuel Chlamydomonas reinhardtii as a model for a systems biology approach to improve biohydrogen production. J Biotechn 142:10–20

    CAS  Google Scholar 

  • Sager R (1954) Mendelian and non-Mendelian inheritance of streptomycin resistance in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 40:356–363

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schroda M, Blöcker D, Beck CF (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 21:121–131

    CAS  PubMed  Google Scholar 

  • Schuhmann H, Lim DKY, Schenk PM (2012) Perspectives on metabolic engineering for increased lipid contents in microalgae. Biofuels 3:71–86

    CAS  Google Scholar 

  • Sharkey TD, Yeh S (2001) Isoprene emission form plans. Annu Rev Plant Physiol Mol Biol 52:407–436

    CAS  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    CAS  PubMed  Google Scholar 

  • Söder C (1976) The use of microalgae in nutrition. Naturwissenschaften 63:131–138

    Google Scholar 

  • Song W, Rashid N, Choi W, Lee K (2011) Biohydrogen production by immobilized Chlorella sp. using cycles of oxygenic photosynthesis and anaerobiosis. Bioresour Technol 102:8676–8681

    CAS  PubMed  Google Scholar 

  • Sorokina O, Corellou F, Dauvillée D, Sorokin A, Goryanin I, Ball S, Bouget F-Y, Millar AJ (2011) Microarray data can predict diurnal changes of starch content in the picoalga Ostreococcus. BMC System Biol 5:36

    Google Scholar 

  • Stanley JG, Jones JB (1976) Feeding algae to fish. Aquaculture 7:219–223

    Google Scholar 

  • Steinbrenner J, Linden H (2013) Licht induction of carotenoid biosynthesis genes in the green algae Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol Biol 52:343–356

    Google Scholar 

  • Steinbrenner JA, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol 72:7477–7484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamiya H (1966) Synchronous cultures of algae. Annu Rev Plant Physiol 17:1–26

    Google Scholar 

  • Torzillo G, Pushparaj B, Masojidek J (2003) Biological constraints in algal biotechnology. Biotechnol Bioproc Engineer 8:338–348

    CAS  Google Scholar 

  • Triki A, Maillard P, Gudin C (1997) Gametogenesis in Haematococcus pluvialis. F. (Volvocales, Chlorophyta). Phycologia 36:190–194

    Google Scholar 

  • Trissl HW, Wilhelm C (1993) Why do thylakoid membranes from higher plants form grana stacks? Trends Biochem Sci 18:415–419

    CAS  PubMed  Google Scholar 

  • Visser H, van Ooyen AJ, Verodes JC (2003) Metabolic engineering of the astaxanthin-biosynthetic pathway of Xanthophyllomyces dendrorhous. FEMS Yeast Res 4:221–231

    CAS  PubMed  Google Scholar 

  • van den Hoek C, Mann D, Jahns HM (eds) (1996) Algae: an introduction to phycology. Cambridge University Press, Cambridge

    Google Scholar 

  • Vaulot D, Eikrem W, Viprey M, Moreau H (2008) The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiol Rev 32:795–820

    CAS  PubMed  Google Scholar 

  • Weinberg J, Kaltschmitt M, Wilhelm C (2012) Biofuels from microalgae – an environmental analysis. Biomass Convers Biorefinery 2:179–194

    CAS  Google Scholar 

  • Weiss TL, Johnston JS, Fjijsawa K, Okada S, Devarenne TP (2011) Genome size and phylogenetic analysis of the A and L races of Botryococcus braunii. J Appl Phycol 23:833–839

    Google Scholar 

  • Wilhelm C, Wild A (1984) The variability of the photosynthetic unit in Chlorella. II. The effect of light intensity and cell development on photosynthesis, P-700 and cytochrome f in homocontinuous and synchronous cultures of Chlorella. J Plant Physiol 115:125–135

    CAS  PubMed  Google Scholar 

  • Wilhelm C, Lenartz-Weiler I (1987) Energy transfer and pigment composition in three chlorophyll b containing light-harvesting complexes isolated from Mantoniella squamata, Chlorella fusca and Sinapis alba. Photosynth Res 13:101–111

    CAS  PubMed  Google Scholar 

  • Wilhelm C, Krämer P, Wild A (1985) Effect of different light qualities on the ultrastructure, thylakoid membrane composition and assimilation metabolism in Chlorella fusca. Physiol Plant 64:359–364

    CAS  Google Scholar 

  • Wilhelm C, Selmar D (2011) Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. J Plant Physiol 168:79–87

    CAS  PubMed  Google Scholar 

  • Worden AZ, Lee J-H, Mock T, Rouzé P, Simmons MP (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes micromonas. Science 324:268–272

    CAS  PubMed  Google Scholar 

  • Yokoyama A, Shizuri Y, Hoshino T, Sandmann G (1996) Thermocryptoxanthins: novel intermediates in the carotenoid bio-synthetic pathway of Thermus thermophilus. Arch Microbiol 165:342–345

    CAS  PubMed  Google Scholar 

  • Zechman FW, Verbruggen H, Leliaert F, Ashworth M, Buchheim MA, Fawley MW, Spalding H, Pueschel CM, Buchheim JA, Verghese B, Hanisak MD (2010) An unrecognized ancient lineage of green plants persists in deep marine waters. J Phycol 46:1288–1295

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the German Funding Agency (DFG) for financial support for Maria Schmidt and the German Ministry of Science and Education (BMBF) for support in developing new concepts of algal based biofuels production (VIP 16 V0001)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wilhelm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schmidt, M., Wilhelm, C. (2014). Green Algae. In: Hohmann-Marriott, M. (eds) The Structural Basis of Biological Energy Generation. Advances in Photosynthesis and Respiration, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8742-0_17

Download citation

Publish with us

Policies and ethics