Skip to main content

Modern Analogs for the Study of Eurypterid Paleobiology

  • Chapter
  • First Online:
Book cover Experimental Approaches to Understanding Fossil Organisms

Part of the book series: Topics in Geobiology ((TGBI,volume 41))

Abstract

Eurypterids are extinct, chelicerate arthropods whose life habits might be elucidated through comparison with living analogs. There are at least two potential eurypterid analogs, xiphosurans and arachnids (specifically, scorpions). Eurypterids and scorpions share striking morphologic and structural similarities despite their different habitats (aquatic vs. terrestrial); eurypterids and xiphosurans share numerous morphological characters and an aquatic habit. Despite the physiological differences inherent between aquatic and terrestrial chelicerates, the similarities in the basic body plan suggest that eurypterids and scorpions faced similar functional challenges during ecdysis, but eurypterid feeding was probably more similar to that of xiphosurans. For studies on the mechanical strength and functional morphology of the eurypterid exoskeleton, Limulus is the closer analog. The choice of modern analog for other aspects of eurypterid paleobiology, including reproduction and whether eurypterids were active predators, is a matter of discussion. The lack of a single, clear eurypterid analog from among extant chelicerates may reflect that eurypterids occupied an ecological niche intermediate between xiphosurans and arachnids. The search for a modern analog for eurypterids, then, is not likely to yield a single model organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almond JE (2002) Giant arthropod trackway Ecca Group. Geobull 45:28

    Google Scholar 

  • Anderton T (1909) The lobster (Homarus vulgaris). Rep Mar Dep New Zealand 1908–1909

    Google Scholar 

  • Auber M (1963) Reproduction et croissance de Buthus occitanus. Ann Sci Nat (Zool et Biol Anim) 5:273–286

    Google Scholar 

  • Bergström J (1979) Morphology of fossil arthropods as a guide to phylogenetic relationships. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand Reinhold, New York, pp 3–60

    Google Scholar 

  • Bliss DE (1982) Shrimps, lobsters and crabs. Columbia

    Google Scholar 

  • Botton ML (1984) Diet and food preferences of the adult horseshoe crab Limulus polyphemus in Delaware Bay, New Jersey, USA. Mar Biol 81:193–207

    Article  Google Scholar 

  • Botton ML, Haskin HH (1984) Distribution and feeding of the horseshoe crab Limulus polyphemus on the continental shelf, New Jersey. Fish Bull USA 82:383–389

    Google Scholar 

  • Botton ML, Ropes JW (1989) Feeding ecology of horseshoe crabs on the continental shelf, New Jersey to North Carolina. Bull Mar Sci 49:637–647

    Google Scholar 

  • Boucot AJ (1990) Evolutionary paleobiology of behavior and coevolution. Elsevier, New York

    Google Scholar 

  • Braddy SJ (2001) Eurypterid palaeoecology: palaeobiological, ichnological and comparative evidence for a ‘mass-moult-mate’ hypothesis. Palaeogeogr Palaeoclim 172:115–132

    Article  Google Scholar 

  • Braddy SJ, Dunlop JA (1997) The functional morphology of mating in the Silurian eurypterid, Baltoeuryperus tetragonophthalmus (Fischer, 1839). Zool J Linn Soc 120:435–461

    Article  Google Scholar 

  • Braddy SJ, Aldridge RJ, Theron JN (1995) A new eurypterid from the Late Ordovician Table Mountain Group, South Africa. Palaeontol 38:563–581

    Google Scholar 

  • Braddy SJ, Aldridge RJ, Gabbott SE, Theron JN (1999) Lamellate bookgills in a late Ordovician eurypterid from the Soom Shale Lagerstätte, South Africa: support for a eurypterid-scorpion clade. Lethaia 32:72–74

    Article  Google Scholar 

  • Braddy SJ, Poschmann M, Tetlie OE (2007) Giant claw reveals the largest ever arthropod. Biol Lett 4:106–109

    Article  Google Scholar 

  • Bradshaw MA (1981) Paleoenvironmental interpretations and systematics of Devonian trace fossils from the Taylor Group (lower Beacon Supergroup), Antarctica. New Zealand J Geol Geophys 24:615–652

    Article  Google Scholar 

  • Brady LF (1947) Invertebrate tracks from the coconino sandstone of northern Arizona. J Paleont 21:466–472

    Google Scholar 

  • Brandt DS (1993) Ecdysis in Flexicalymene meeki (Trilobita). J Paleontol 67:999–1005

    Google Scholar 

  • Brandt DS (2002) Ecdysial efficiency and evolutionary efficacy among marine arthropods. Alcheringa 26:399–421

    Article  Google Scholar 

  • Briggs DEG, Fortey RA (1989) The early radiation and relationships of the major arthropod groups. Sci 246:241–243

    Article  Google Scholar 

  • Briggs DEG, Rolfe WDI (1983) A giant arthropod trackway from the Lower Mississippian of Pennsylvania. J Paleontol 57:377–390

    Google Scholar 

  • Briggs DEG, Siveter DJ, Siveter DJ, Sutton MD, Garwood RJ, Legg D (2012) Silurian horseshoe crab illuminates the evolution of arthropod limbs. PNAS doi:10.1073/pnas.1205875109

    Google Scholar 

  • Bristowe WS (1971) The world of spiders, 2nd edn. Collins, London

    Google Scholar 

  • Carerra PC, Mattoni CI, Peretti AV (2009) Chelicerae as male grasping organs in scorpions: sexual dimorphism and associated behaviour. Zool 112:332–350

    Article  Google Scholar 

  • Caster KEC (1938) A restudy of the tracks of Paramphibius. J Paleont 12:3–60

    Google Scholar 

  • Caster KEC (1944) Limuloid trails from the Upper Triassic (Chinle) of the Petrified Forest National Monument, Arizona. Am J Sci 242:74–84

    Article  Google Scholar 

  • Chatterji A, Mishra JK, Parulekar AH (1992) Feeding behaviour and food selection in the horseshoe crab, Tachypleus gigas (Müller). Hydrobiologia 246:41–48

    Article  Google Scholar 

  • Chisholm JI (1983) Xiphosurid burrows from the lower coal measures (Westphalian A) of West Yorkshire. Palaeont 28:619–628

    Google Scholar 

  • Clarke JM, Ruedemann R (1912) The Eurypterida of New York. Memoir of the New York state museum of natural history. New York State Education Department, New York

    Google Scholar 

  • Coddington JA, Giribet G, Harvey MS, Prendini L, Walter DE (2004) Arachnida. In: Cracraft J, Donoghue M (eds) Assembling the tree of life. Oxford University Press, Oxford, pp 296–318

    Google Scholar 

  • Dalingwater JE (1973) The cuticle of a eurypterid. Lethaia 6:179–186

    Article  Google Scholar 

  • Dalingwater JE (1975) Further observations on eurypterid cuticles. Fossils Strat 4:271–279

    Google Scholar 

  • Davis RA, Fraaye RHB, Holland CH (2001) Trilobites within nautiloid cephalopods. Lethaia 34:37–45

    Article  Google Scholar 

  • Draganits E, Braddy SJ, Briggs DEG (2001) A Gondwanan coastal arthropod ichnofauna from the muth formation (Lower Devonian, Northern India): paleoenvironment and tracemaker behavior. Palaios 16:126–127

    Article  Google Scholar 

  • Dunlop JA (1997) Palaeozoic arachnids and their significance for arachnid phylogeny. In: Zabka M (ed) Proceedings of the 16th European colloquium of arachnology, Siedlce, 1996. Wyzsza Szkola Rolnicko-Pedagogiczna, Siedlce

    Google Scholar 

  • Dunlop JA (2010) Geological history and phylogeny of Chelicerata. Arthr Struc Dev 39:124–142

    Article  Google Scholar 

  • Dunlop JA, Braddy SJ (1997) Slit-like structures on the prosomal appendages of the eurypterid Baltoeurypterus. Neues Jahrb Geol Palaontol Monatshefts 1:31–38

    Google Scholar 

  • Dunlop JA, Braddy SJ (2001) Scorpions and their sister group relationships. In: Fet V, Selden PA (eds) Scorpions 2001, British Arachnological Society, pp 1–24

    Google Scholar 

  • Fenton CL, Fenton MA (1937) Burrows and trails from Pennsylvanian rocks of Texas. Am Midl Nat 18:1079–1084

    Article  Google Scholar 

  • Gaban RD, Farley RD (2002) Ecdysis in scorpions: supine behavior and exuvial ultrastructure. Invertebr Biol 121:136–147

    Article  Google Scholar 

  • Gevers TW, Frakes LA, Edwards LN, Marzolf JE (1971) Trace fossils in the Lower Beacon sediments (Devonian), Darwin Mountains, Southern Victoria Land, Antarctica. J Paleont 45:81–94

    Google Scholar 

  • Grasshoff M (1978) A model of the evolution of the main Chelicerate groups. Symp Zool Soc Lond 42:273–284

    Google Scholar 

  • Hanken NM, Størmer L (1975) The trail of a large Silurian eurypterid. Fossils Strat 4:255–270

    Google Scholar 

  • Häntzschel W (1975) Trace fossils and problematica. Treatise on invertebrate paleontology, 2nd edn. Part W: miscellanea, supp 1. Geological Society of America and University of Kansas Press (Geol Soc Am and Univ Kansas Press), Lawrence

    Google Scholar 

  • Hembree DI, Johnson LM, Tenwalde RW (2012) Neoichnology of the desert scorpion Hadrurus arizonensis: burrows to biogenic cross lamination. Palaeontol Electron 15:1–34

    Google Scholar 

  • Herrick FH (1911) Natural history of the American lobster. U S Government Printing Office, Washington

    Google Scholar 

  • Jeram AJ (1998) Phylogeny classification and evolution of Silurian and Devonian scorpions. In: Selden PA (ed) Proceedings of the 17th European colloquium of arachnology, Edinburgh, July 1997. British Arachnological Society, Burnham Beeches

    Google Scholar 

  • Jeram AJ (2001) Paleontology. In: Brownell P, Polis GA (eds) Scorpion biology and research. Oxford University Press, Oxford, pp 370–392

    Google Scholar 

  • Joffe I, Hepburn HR, Andersen SO (1975) On the mechanical properties of Limulus solid cuticle. J com Physio 101:147–160

    Article  Google Scholar 

  • Kjellesvig-Waering EN (1986) A restudy of the fossil Scorpionida of the world. Palaeontograph Am 55:1–287

    Google Scholar 

  • Kühl G, Bergmann A, Dunlop J, Garwood RJ, Rust J (2012) Redescription and palaeobiology of Palaeoscorpius devonicus Lehmann, 1944 from the Lower Devonian Hunsrück Slate of Germany. Palaeon 55:775–787

    Article  Google Scholar 

  • Lankester ER (1881) Limulus, an arachnid. Q J Microsc Sci 21:504–649

    Google Scholar 

  • Laub RS, Tollerton VP, Berkof RS (2011) The cheliceral claw of Acutiramus (Arthropoda: Eurypterida): functional analysis based on morphology and engineering principles. Bull Buffalo Soc Nat Sci 39:29–42

    Google Scholar 

  • Laverock WS (1927) On the casting of the shell in Limulus. Trans Liverpool Biol Soc 13–16

    Google Scholar 

  • Lockwood S (1870) The horse foot crab. Am Nat 4:257–274

    Article  Google Scholar 

  • Loveland RE (2001) The life history of horseshoe crabs. In: Tancredi JT (ed) Limulus in the limelight: a species 350 million years in the making and in peril? Kluwer Academic/Plenum, New York, pp 93–101

    Google Scholar 

  • Manning PL, Dunlop JA (1995) The respiratory organs of eurypterids. Palaeontol 38:287–297

    Google Scholar 

  • Martin AJ, Rindsberg AK (2007) Arthropod tracemakers of Nereites? Neoichnological observations of juvenile limulids and their paleoichnological applications. In: Miller WEIII (ed) Trace fossils. Elsevier, Amsterdam, pp 478–488

    Chapter  Google Scholar 

  • McCoy VE, Brandt DS (2009) Scorpion taphonomy: criteria for distinguishing fossil scorpion molts and carcasses. J Arachnol 37:312–320

    Article  Google Scholar 

  • Miller MF (1982) Limulicubichnus: a new ichnogenus of limulid resting traces. J Paleont 56:429–433

    Google Scholar 

  • Mutvei H (1977) SEM studies on arthropod exoskeletons, 2. Horseshoe crab Limulus polyphemus (L.) in comparison with extinct eurypterids and recent scorpions. Zool Scripta 6:203–213

    Article  Google Scholar 

  • Osgood RA (1970) Trace fossils of the Cincinnati area. Palaeontogr Am VI:281–444

    Google Scholar 

  • Packard AS (1883) Molting of the shell in Limulus. Am Nat 17:1075–1076

    Google Scholar 

  • Plotnick R (1985) Lift based mechanisms for swimming in eurypterids and portunid crabs. Earth Env Sci Trans R Soc Edinburgh 76:325–337

    Article  Google Scholar 

  • Plotnick R (1996) The scourge of the Silurian seas. Am Paleontol 4:2–3

    Google Scholar 

  • Plotnick R (1999) Habitat of Llandoverian-Lochkovian eurypterids. In: Boucot AJ, Lawson JD (eds) Paleocommunities: a case study from the Silurian and Lower Devonian. Cambridge University Press, Cambridge, pp 106–131

    Google Scholar 

  • Plotnick R, Baumiller T (1988) The pterygotid telson as a biological rudder. Lethaia 21:13–27

    Article  Google Scholar 

  • Polis G (ed) (1990) The biology of scorpions. Stanford University Press, Stanford

    Google Scholar 

  • Pope DS (2000) Testing function of fiddler crab claw waving by manipulating social context. Behav Ecol Sociobiol 47:432–437

    Article  Google Scholar 

  • Poschmann M, Braddy SJ (2010) Eurypterid trackways from Early Devonian tidal facies of Alken an der Mosel (Rheinisches Schiefergebirge, Germany). Palaeobio Palaeoenv 90:111–124

    Article  Google Scholar 

  • Raw F (1957) Origin of chelicerates. J Paleontol 31:139–192

    Google Scholar 

  • Richter R (1954) Fährte eines “Riesenkrebses” im Rheinischen Schiefergebirge. Natur Volk 84:261–296

    Google Scholar 

  • Rudloe A (1980) The breeding behavior and patterns of movement of horseshoe crabs, Limulus polyphemus in the vicinity of breeding beaches in Apalachee Bay, Florida. Estuaries 3:177–183

    Article  Google Scholar 

  • Scholtz G, Kamenz C (2006) The book lungs of Scorpiones and Tetrapulmonata (Chelicerata, Arachnida): evidence for homology and a single terrestrialisation event of a common arachnid ancestor. Zoology 109:2–13

    Article  Google Scholar 

  • Selden PA (1984) Autecology of Silurian eurypterids. Spec Papers Palaeontol 32:39–54

    Google Scholar 

  • Selden PA, Jeram AJ (1989) Palaeophysiology of terrestrialisation in the Chelicerata. Trans R Soc Edinburgh. Earth Sci 80:303–310

    Google Scholar 

  • Selden PA, Whalley P (1985) Eurypterid respiration [and discussion]. Phil Trans R Soc Lond B 309:219–226

    Article  Google Scholar 

  • Sharov AG (1966) Basic Arthropodan stock with special reference to insects. Pergamon Press, Oxford

    Google Scholar 

  • Shultz JW (1990) Evolutionary morphology and phylogeny of Arachnida. Cladistics 6:1–38

    Article  Google Scholar 

  • Shuster CN Jr (1982) A pictorial review of the natural history and ecology of the horseshoe crab Limulus polyphemus, with reference to other Limulidae. In: Bonaventura J, Bonaventura C, Tesh S (eds) Physiology and biology of horseshoe crabs. Liss, New York, pp 1–52

    Google Scholar 

  • Shuster CN Jr, Barlow RB, Brockmann HJ (2003) The American horseshoe crab. Harvard University Press, Cambridge

    Google Scholar 

  • Sissom WD (1990) Systematics, biogeography, and paleontology. In: Polis GA (ed) The biology of scorpions. Stanford University Press, Stanford, pp 64–160

    Google Scholar 

  • Speyer SE, Brett CE (1985) Clustered trilobite assemblages in the Middle Devonian Hamilton Group. Lethaia 18:85–103

    Article  Google Scholar 

  • Størmer L (1934) Merostomata from the Downtonian sandstone of Ringerike, Norway. Skrifter utgitt av Det Norske Vidensk-Akad i Oslo I. Mat-Naturvidenskapelig Klasse 10:1–125

    Google Scholar 

  • Størmer L (1955) Merostomata. In: Moore RC (ed) Treatise on invertebrate paleontology. Part P: Arthropoda 2: Chelicerata. Geological Society of America and University of Kansas Press, Lawrence, pp P4–P41

    Google Scholar 

  • Størmer L, Petrunkevitch A, Hedgpeth JW (1955). Treatise on invertebrate paleontology. Part P: Arthropoda 2: Chelicerata. Geological Society of America and University of Kansas Press, Lawrence

    Google Scholar 

  • Tetlie OE, Brandt DS, Briggs DEG (2008) Ecdysis in sea scorpions (Chelicerata: Eurypterida). Palaeogeogr Palaeoclim 265:182–194

    Article  Google Scholar 

  • Van Roy P, Orr PJ, Botting JP, Muir LA, Vinther J, Lefebvre B, el Hariri K, Briggs DEG (2010) Ordovician faunas of Burgess Shale type. Nature 465:215–218

    Article  Google Scholar 

  • Wang G (1993) Xiphosurid trace fossils from the Westbury Formation (Rhaetian) of southwest Britain. Palaeont 36:111–122

    Google Scholar 

  • Weygoldt P (1998) Evolution and systematics of the Chelicerata. Exp App Acarol 22:63–79

    Article  Google Scholar 

  • Whyte M (2005) A gigantic fossil arthropod trackway. Nature 438:576

    Article  Google Scholar 

  • Woodward H (1865) On a new genus of Eurypterida from the Lower Ludlow rocks of Leintwardine, Shropshire. Q J Geol Soc 21:490–492

    Article  Google Scholar 

Download references

Acknowledgments

We thank Erik Tetlie (Overhalla, Norway) and Derek Briggs (Yale University) for their discussions and encouragement, and two anonymous reviewers for constructive comments. This study was supported by an undergraduate research grant from the College of Natural Science at Michigan State University and a Schuchert travel award from Yale University to VM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danita S. Brandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brandt, D., McCoy, V. (2014). Modern Analogs for the Study of Eurypterid Paleobiology. In: Hembree, D., Platt, B., Smith, J. (eds) Experimental Approaches to Understanding Fossil Organisms. Topics in Geobiology, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8721-5_4

Download citation

Publish with us

Policies and ethics