Skip to main content

Reproductive and Immune System Interactions in the Context of Life History and Sexual Selection Theory

  • Chapter
  • First Online:
Eco-immunology

Abstract

Host variation in parasite load abounds, both within and across natural populations. The forces that shape and maintain this variation, however, are much less obvious. Over the past two decades, the emerging field of ecoimmunology has begun to address the underlying sources of this variation and its evolutionary consequences. Clearly, spatial and temporal heterogeneity in the environment contribute to variation in host parasite load by varying parasite distribution and abundance. However, host variation in the ability to acquire resources, and differences in how these resources are allocated, also play an integral role in parasite susceptibility. That is to say, not all individuals within a population are capable of managing the cost of immune defense, or may employ different cost-managing strategies. This realization has spurred a surge in studies focused on how immune pathways compete with other costly physiological pathways, such as those associated with reproduction. Interest in this relationship has no doubt been driven by the reproductive system’s high energetic cost and its direct association with host fitness. In this chapter, I examine the interactions between reproduction and immunity to highlight the simultaneous role both play in the evolution of immunological and reproductive adaptations. I begin by placing this interaction in the context of life history theory and discuss how competition for limited resources may constrain the evolution and expression of both systems. I then discuss the role that parasites play in directly shaping reproductive adaptations through sexual selection. In this discussion, I attempt to shed light on the lingering controversy that has overshadowed genetic benefit models and provide concrete predictions for future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamo SA (1999) Evidence for adaptive changes in egg laying in crickets exposed to bacteria and parasites. Anim Behav 57:117–124

    PubMed  Google Scholar 

  • Adamo SA (2004) How should behavioural ecologists interpret measurements of immunity? Anim Behav 68:1443–1449

    Google Scholar 

  • Agnew P, Bedhomme S, Haussy C, Michalakis Y (1999) Age and size at maturity of the mosquito Culex pipiens infected by the microsporidian parasite Vavraia culicis. Proc R Soc Lond B-Biol Sci 266:947–952

    Google Scholar 

  • Ahmed AM, Baggott SL, Maingon R, Hurd H (2002) The costs of mounting an immune response are reflected in the reproductive fitness of the mosquito Anopheles gambiae. Oikos 97:371–377

    Google Scholar 

  • Al-Qarawi AA, Omar HM, Abdel-Rahman HA, El-Mougy SA, El-Belely MS (2004) Trypanosomiasis-induced infertility in dromedary (Camelus dromedarius) bulls: changes in plasma steroids concentration and semen characteristics. Anim Reprod Sci 84:73–82

    PubMed  CAS  Google Scholar 

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  • Askenmo C (1979) Reproductive effort and return rate of male pied flycatchers. Am Nat 114:748–753

    Google Scholar 

  • Baeta R, Faivre B, Motreuil S, Gaillard M, Moreau J (2008) Carotenoid trade-off between parasitic resistance and sexual display: an experimental study in the blackbird (Turdus merula). Proc R Soc B-Biol Sci 275:427–434

    CAS  Google Scholar 

  • Bayyari GR, Huff WE, Rath NC, Balog JM, Newberry LA, Villines JD, Skeeles JK, Anthony NB, Nestor KE (1997) Effect of the genetic selection of turkeys for increased body weight and egg production on immune and physiological responses. Poult Sci 76:289–296

    PubMed  CAS  Google Scholar 

  • Bisset SA, Morris CA, Mcewan JC, Vlassoff A (2001) Breeding sheep in New Zealand that are less reliant on anthelmintics to maintain health and productivity. New Zeal Vet J 49:236–246

    CAS  Google Scholar 

  • Boltz CR, Boltz DA, Bunick D, Scherba G, Bahr JM (2007) Vaccination against the avian infectious bronchitis virus affects sperm concentration, sperm quality and blood testosterone concentrations in cockerels. Brit Poultry Sci 48:617–624

    CAS  Google Scholar 

  • Bonneaud C, Mazuc J, Chastel O, Westerdahl H, Sorci G (2004) Terminal investment induced by immune challenge and fitness traits associated with major histocompatibility complex in the house sparrow. Evolution 58:2823–2830

    PubMed  CAS  Google Scholar 

  • Boots M, Begon M (1993) Trade-offs with resistance to a granulosis-virus in the indian meal moth, examined by a laboratory evolution experiment. Funct Ecol 7:528–534

    Google Scholar 

  • Boots M, Best A, Miller MR, White A (2009) The role of ecological feedbacks in the evolution of host defence: what does theory tell us? Phil Trans R Soc B-Biol Sci 364:27–36

    Google Scholar 

  • Boyce MS, Perrins CM (1987) Optimizing great tit clutch size in a fluctuating environment. Ecology 68:142–153

    Google Scholar 

  • Chew BP, Park JS (2004) Carotenoid action on the immune response. J Nutr 134:257S–261S

    PubMed  CAS  Google Scholar 

  • Copeland, EK and Fedorka, KM (2012) The influence of male age and simulated pathogenic infection on producing a dishonest sexual signal. Proc R Soc B-Biol Sci 279:4740–4746

    Google Scholar 

  • De Gregorio E, Spellman PT, Rubin GM, Lemaitre B (2001) Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci U S A 98:12590–12595

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dowling DK, Simmons LW. (2009) Reactive oxygen species as universal constraints in life-history evolution. Proc R Soc B-Biol Sci 276:1737–1745

    CAS  Google Scholar 

  • Faivre B, Gregoire A, Preault M, Cezilly F, Sorci G (2003) Immune activation rapidly mirrored in a secondary sexual trait. Science 300:103–103

    PubMed  CAS  Google Scholar 

  • Fedorka KM, Mousseau TA (2002) Nuptial gifts and the evolution of male body size. Evolution 56:590–596

    PubMed  Google Scholar 

  • Fedorka KM, Mousseau TA (2007) Immune system activation affects male sexual signal and reproductive potential in crickets. Behav Ecol 18:231–235

    Google Scholar 

  • Fedorka KM, Zuk M, Mousseau TA (2004) Immune suppression and the cost of reproduction in the ground cricket, Allonemobius socius. Evolution 58:2478–2485

    PubMed  Google Scholar 

  • Fedorka KM, Linder JE, Winterhalter W, Promislow D (2007) Post-mating disparity between potential and realized immune response in Drosophila melanogaster. Proc R Soc B-Biol Sci 274:1211–1217

    Google Scholar 

  • Fellowes MDE, Kraaijeveld AR, Godfray HCJ (1998) Trade-off associated with selection for increased ability to resist parasitoid attack in Drosophila melanogaster. Proc R Soc Lond B-Biol Sci 265:1553–1558

    CAS  Google Scholar 

  • Ferdig MT, Beerntsen BT, Spray FJ, Li JY, Christensen BM (1993) Reproductive costs associated with resistance in a mosquito-filarial worm system. Am J Trop Med Hyg 49:756–762

    PubMed  CAS  Google Scholar 

  • Festa-Bianchet M (1989) Individual differences, parasites, and the costs of reproduction for bighorn ewes (Ovis canadensis). J Anim Ecol 58:785–795

    Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. The Clarendon Press

    Google Scholar 

  • Flatt T, Tu MP, Tatar M (2005) Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. Bioessays 27:999–1010

    PubMed  CAS  Google Scholar 

  • Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139:603–622

    Google Scholar 

  • Folstad I, Skarstein F (1997) Is male germ line control creating avenues for female choice? Behav Ecol 8:109–112

    Google Scholar 

  • Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging—an evolutionary perspective on immunosenescence. In: Toussaint O, Osiewacz HD, Lithgow GJ, Brack C (eds) Molecular and cellular gerontology. New York Acad Sciences, New York

    Google Scholar 

  • Frank SA (1993) A model of inducible defense. Evolution 47:325–327

    Google Scholar 

  • Frederich RC, Hamann A, Anderson S, Lollmann B, Lowell BB, Flier JS (1995) Leptin levels reflect body lipid-content in mice–evidence for diet-induced resistaance to leptin action. Nat Med 1:1311–1314

    PubMed  CAS  Google Scholar 

  • French SS, Denardo DF, Moore MC (2007) Trade-offs between the reproductive and immune systems: facultative responses to resources or obligate responses to reproduction? Am Nat 170:79–89

    PubMed  Google Scholar 

  • French SS, Denardo DF, Greives TJ, Strand CR, Demas GE (2010) Human disturbance alters endocrine and immune responses in the Galapagos marine iguana (Amblyrhynchus cristatus). Horm Behav 58:792–799

    PubMed Central  PubMed  CAS  Google Scholar 

  • Frentiu FD, Clegg SM, Chittock J, Burke T, Blows MW, Owens IPF (2008) Pedigree-free animal models: the relatedness matrix reloaded. Proc R Soc B-Biol Sci 275:639–647

    Google Scholar 

  • Gems D, Riddle DL (1996) Longevity in Caenorhabditis elegans reduced by mating but not gamete production. Nature 379:723–725

    PubMed  CAS  Google Scholar 

  • Gordon SP, Reznick DN, Kinnison MT, Bryant MJ, Weese DJ, Rasanen K, Millar NP, Hendry AP (2009) Adaptive changes in life history and survival following a new guppy introduction. Am Nat 174:34–45

    PubMed  Google Scholar 

  • Graham AL, Allen JE, Read AF (2005) Evolutionary causes and consequences of immunopathology. Annual review of ecology evolution and systematics. Annual Reviews, Palo Alto

    Google Scholar 

  • Gustafsson L, Nordling D, Andersson MS, Sheldon BC, Qvarnstrom A (1994) Infectious-diseases, reproductive effort and the cost of reproduction in birds. Phil Trans R Soc Lond B-Biol Sci 346:323–331

    CAS  Google Scholar 

  • Haldar C, Gupta S, Rai S, Ahmad R, Yadav R (2012) Pineal gland and circulatory melatonin in the regulation of immune status of seasonally breeding animals. In: Demas GE, Nelson RJ (eds) Ecoimmunology. Oxford University Press, New York

    Google Scholar 

  • Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds—a role for parasites. Science 218:384–387

    PubMed  CAS  Google Scholar 

  • Hamilton WJ, Poulin R (1997) The Hamilton and Zuk hypothesis revisited: a meta-analytical approach. Behaviour 134:299–320

    Google Scholar 

  • Harshman LG, Zera AJ (2007) The cost of reproduction: the devil in the details. Trends Ecol Evol 22:80–86

    PubMed  Google Scholar 

  • Helfenstein F, Losdat S, Moller AP, Blount JD, Richner H (2010) Sperm of colourful males are better protected against oxidative stress. Ecol Lett 13:213–222

    PubMed  Google Scholar 

  • Horak P, Ots I, Vellau H, Spottiswoode C, Moller AP (2001) Carotenoid-based plumage coloration reflects hemoparasite infection and local survival in breeding great tits. Oecologia 126:166–173

    Google Scholar 

  • Hosken DJ (2001) Sex and death: microevolutionary trade-offs between reproductive and immune investment in dung flies. Curr Biol 11:R379–R380

    PubMed  CAS  Google Scholar 

  • Hosseinzadeh S, Brewis IA, Eley A, Pacey AA (2001) Co-incubation of human spermatozoa with Chlamydia trachomatis serovar E causes premature sperm death. Hum Reprod 16:293–299

    PubMed  CAS  Google Scholar 

  • Ilmonen P, Taarna T, Hasselquist D (2000) Experimentally activated immune defence in female pied flycatchers results in reduced breeding success. Proc R Soc Lond B-Biol Sci 267:665–670

    CAS  Google Scholar 

  • Jacot A, Scheuber H, Kurtz J, Brinkhof MWG (2005) Juvenile immune status affects the expression of a sexually selected trait in field crickets. J Evolution Biol 18:1060–1068

    CAS  Google Scholar 

  • Jokela J, Lively CM (1995) Parasites, sex, and early reproduction in a mixed population of freshwater snails. Evolution 49:1268–1271

    Google Scholar 

  • Kirkwood TBL, Rose MR (1991) Evolution of senescence—late survival sacrificed for reproduction. Phil Trans R Soc Lond B-Biol Sci 332:15–24

    CAS  Google Scholar 

  • Knell RJ, Webberley KM (2004) Sexually transmitted diseases of insects: distribution, evolution, ecology and host behaviour. Biol Rev 79:557–581

    PubMed  Google Scholar 

  • Knowles SCL, Nakagawa S, Sheldon BC (2009) Elevated reproductive effort increases blood parasitaemia and decreases immune function in birds: a meta-regression approach. Funct Ecol 23:405–415

    Google Scholar 

  • Koella JC, Boete C (2002) A genetic correlation between age at pupation and melanization immune response of the yellow fever mosquito Aedes aegypti. Evolution 56:1074–1079

    PubMed  Google Scholar 

  • Kolluru GR, Ruiz NC, Del Cid N, Dunlop E, Grether GF (2006) The effects of carotenoid and food intake on caudal fin regeneration in male guppies. J Fish Biol 68:1002–1012

    CAS  Google Scholar 

  • Kraaijeveld AR, Godfray HCJ (1997) Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389:278–280

    PubMed  CAS  Google Scholar 

  • Lafferty KD (1993) The marine snail, cerithidae-californica, matures at smaller sizes were parasitism is high. Oikos 68:3–11

    Google Scholar 

  • Lazzaro BP, Little TJ (2009) Immunity in a variable world. Phil Trans R Soc B-Biol Sci 364:15–26

    Google Scholar 

  • Liljedal S, Folstad I, Skarstein F (1999) Secondary sex traits, parasites, immunity and ejaculate quality in the Arctic charr. Proc R Soc Lond B-Biol Sci 266:1893–1898

    Google Scholar 

  • Lockhart AB, Thrall PH, Antonovics J (1996) Sexually transmitted diseases in animals: ecological and evolutionary implications. Biol Rev Camb Philos Soc 71:415–471

    PubMed  CAS  Google Scholar 

  • Lord GM, Matarese G, Howard LK, Baker RJ, Bloom SR, Lechler RI (1998) Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394:897–901

    PubMed  CAS  Google Scholar 

  • Lorusso F, Palmisano M, Chironna M, Vacca M, Masciandaro P, Bassi E, Luigi LS, Depalo R (2010) Impact of chronic viral diseases on semen parameters. Andrologia 42:121–126

    PubMed  CAS  Google Scholar 

  • Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B 1998. Genetics and analysis of quantitative traits. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Mccurdy DG, Boates JS, Forbes MR (2001) An empirical model of the optimal timing of reproduction for female amphipods infected by trematodes. J Parasitol 87:24–30

    PubMed  CAS  Google Scholar 

  • Mcgraw KJ, Ardia DR (2003) Carotenoids, immunocompetence, and the information content of sexual colors: an experimental test. Am Nat 162:704–712

    PubMed  Google Scholar 

  • Mcgraw LA, Gibson G, Clark AG, Wolfner MF (2004) Genes regulated by mating, sperm, or seminal proteins in mated female Drosophila melanogaster. Curr Biol 14:1509–1514

    PubMed  CAS  Google Scholar 

  • Mckean KA, Nunney L (2001) Increased sexual activity reduces male immune function in Drosophila melanogaster. Proc Natl Acad Sci U S A 98:7904–7909

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mckean KA, Yourth CP, Lazzaro BP, Clark AG (2008) The evolutionary costs of immunological maintenance and deployment. Bmc Evol Biol 8:76

    PubMed Central  PubMed  Google Scholar 

  • Moret Y, Schmid-Hempel P (2000) Survival for immunity: the price of immune system activation for bumblebee workers. Science 290:1166–1168

    PubMed  CAS  Google Scholar 

  • Moret Y, Schmid-Hempel P (2004) Social life-history response to individual immune challenge of workers of Bombus terrestris L.: a possible new cooperative phenomenon. Ecol Lett 7:146–152

    Google Scholar 

  • Nordling D, Andersson M, Zohari S, Gustafsson L 1998. Reproductive effort reduces specific immune response and parasite resistance. Proc R Soc Lond B-Biol Sci 265:1291–1298

    Google Scholar 

  • Norris K, Anwar M, Read AF (1994) Reproductive effort influences the prevelance of haemtozoan parasites in great tits. J Anim Ecol 63:601–610

    Google Scholar 

  • Olvido AE, Wagner WE (2004) Signal components, acoustic preference functions and sexual selection in a cricket. Biol J Linn Soc 83:461–472

    Google Scholar 

  • Partridge L, Farquhar M (1981) Sexual-activity reduces lifespan of male fruitflies. Nature 294:580–582

    Google Scholar 

  • Promislow DEL, Fedorka KM, Burger JMS (2006) Evolutionary biology of aging: future directions. In: Masoro EJ, Austad SN (eds) Handbook of the biology of aging. Elsevier, New York

    Google Scholar 

  • Raberg L, Nilsson JA, Ilmonen P, Stjernman M, Hasselquist D (2000) The cost of an immune response: vaccination reduces parental effort. Ecol Lett 3:382–386

    Google Scholar 

  • Radhakrishnan P, Fedorka KM (2012) Immune activation decreases sperm viability and induces females to purge stored sperm. Proc R Soc Lond B-Biol Sci 276: 3577–3583

    Google Scholar 

  • Read AF, Harvey PH (1989) Reassessment of comparative evidence for Hamilton and Zuk theory on the evolution of secondary sexual characters. Nature 339:618–620

    Google Scholar 

  • Reznick DN, Shaw FH, Rodd FH, Shaw RG (1997) Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata). Science 275:1934–1937

    PubMed  CAS  Google Scholar 

  • Richard DS, Rybczynski R, Wilson TG, Wang Y, Wayne ML, Zhou Y, Partridge L, Harshman LG (2005) Insulin signaling is necessary for vitellogenesis in Drosophila melanogaster independent of the roles of juvenile hormone and ecdysteroids: female sterility of the chico(1) insulin signaling mutation is autonomous to the ovary. J Insect Physiol 51:455–464

    PubMed  CAS  Google Scholar 

  • Richner H, Christe P, Oppliger A (1995) Paternal investment affects prevalence of malaria. Proc Natl Acad Sci U S A 92:1192–1194

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ricklefs RE, Wikelski M (2002) The physiology/life-history nexus. Trends Ecol Evol 17:462–468

    Google Scholar 

  • Ritland K (1996) Marker-based method for inferences about quantitative inheritance in natural populations. Evolution 50:1062–1073

    Google Scholar 

  • Roff DA (1992) The evolution of life histories. Chapman and Hall, New York

    Google Scholar 

  • Roff D (1997) Evolutionary quantitative genetics. Chapman and Hall, New York

    Google Scholar 

  • Roff DA (2002) Life history evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Rolff J, Kraaijeveld AR (2003) Selection for parasitoid resistance alters mating success in Drosophila. Proc R Soc Lond B-Biol Sci 270:S154–S155

    Google Scholar 

  • Rolff J, Siva-Jothy MT (2002) Copulation corrupts immunity: a mechanism for a cost of mating in insects. Proc Natl Acad Sci U S A 99:9916–9918

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ryder JJ, Siva-Jothy MT (2000) Male calling song provides a reliable signal of immune function in a cricket. Proc R Soc Lond B-Biol Sci 267:1171–1175

    CAS  Google Scholar 

  • Saino N, Møller AP (1996) Sexual ornamentation and immunocompetence in the barn swallow. Behav Ecol 7:227–232

    Google Scholar 

  • Schmid-Hempel P (2003) Variation in immune defence as a question of evolutionary ecology. Proc R Soc Lond B-Biol Sci 270:357–366

    Google Scholar 

  • Schmid-Hempel P (2011) Evolutionary parasitology. Oxford University Press, New York

    Google Scholar 

  • Sheldon BC (1993) Sexually-transmitted disease in birds–occurrence and evolutionary significance. Phil Trans R Soc Lond B-Biol Sci 339:491–497

    CAS  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    PubMed  CAS  Google Scholar 

  • Shoemaker KL, Parsons NM, Adamo SA (2006) Mating enhances parasite resistance in the cricket Gryllus texensis. Anim Behav 71:371–380

    Google Scholar 

  • Short SM, Lazzaro BP (2010) Female and male genetic contributions to post-mating immune defence in female Drosophila melanogaster. Proc R Soc B-Biol Sci 277:3649–3657

    Google Scholar 

  • Simmons LW (2012) Resource allocation trade-off between sperm quality and immunity in the field cricket, Teleogryllus oceanicus. Behav Ecol 23:168–173

    Google Scholar 

  • Simmons LW, Roberts B (2005) Bacterial immunity traded for sperm viability in male crickets (vol 309, pg 2031, 2005). Science 310:1119–1119

    Google Scholar 

  • Siva-Jothy MT, Tsubaki Y, Hooper RE (1998) Decreased immune response as a proximate cost of copulation and oviposition in a damselfly. Physiol Entomol 23:274–277

    Google Scholar 

  • Siva-Jothy MT, Moret Y, Rolff J (2005) Insect immunity: an evolutionary ecology perspective. In: SIMPSON SJ (ed) Advances in insect physiology, vol 32. Elsevier Academic Press Inc, San Diego

    Google Scholar 

  • Skarstein F, Folstad I, Liljedal S (2001) Whether to reproduce or not: immune suppression and costs of parasites during reproduction in the Arctic charr. Can J Zool-Revue Canadienne De Zoologie 79:271–278

    Google Scholar 

  • Skau PA, Folstad I (2005) Does immunity regulate ejaculate quality and fertility in humans? Behav Ecol 16:410–416

    Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, New York

    Google Scholar 

  • Sutter GR, Rothenbu WC, Raun ES (1968) Resistance to American foulbrood in honey bees. 7. Growth of resistant and susceptible larvae. J Invert Pathol 12:25–28

    Google Scholar 

  • Van Noordwijk AJ, Dejong G (1986) Acquisition and allocation of resources–Their influence on variation in life-history tactics. Am Nat 128:137–142

    Google Scholar 

  • Velando A, Drummond H, Torres R (2006) Senescent birds redouble reproductive effort when ill: confirmation of the terminal investment hypothesis. Proc R Soc B-Biol Sci 273:1443–1448

    Google Scholar 

  • Verhulst S, Dieleman SJ, Parmentier HK (1999) A tradeoff between immunocompetence and sexual ornamentation in domestic fowl. Proc Natl Acad Sci U S A 96:4478–4481

    PubMed Central  PubMed  CAS  Google Scholar 

  • Webster JP, Woolhouse MEJ (1999) Cost of resistance: relationship between reduced fertility and increased resistance in a snail-schistosome host-parasite system. Proc R Soc Lond B-Biol Sci 266:391–396

    Google Scholar 

  • Westneat DF, Birkhead TR (1998) Alternative hypotheses linking the immune system and mate choice for good genes. Proc R Soc Lond B-Biol Sci 265:1065–1073

    Google Scholar 

  • Wilfert L, Gadau J, Schmid-Hempel P (2007) The genetic architecture of immune defense and reproduction in male Bombus terrestris bumblebees. Evolution 61:804–815

    PubMed  Google Scholar 

  • Williams TD, Christians JK, Aiken JJ, Evanson M (1999) Enhanced immune function does not depress reproductive output. Proc R Soc Lond B-Biol Sci 266:753–757

    Google Scholar 

  • Winterhalter WE, Fedorka KM (2009) Sex-specific variation in the emphasis, inducibility and timing of the post-mating immune response in Drosophila melanogaster. Proc R Soc B-Biol Sci 276:1109–1117

    Google Scholar 

  • Yan G, Severson DW, Christensen BM (1997) Costs and benefits of mosquito refractoriness to malaria parasites: implications for genetic variability of mosquitoes and genetic control of malaria. Evolution 51:441–450

    Google Scholar 

  • Yaniz JL, Marco-Aguado MA, Mateos JA, Santolaria P (2010) Bacterial contamination of ram semen, antibiotic sensitivities, and effects on sperm quality during storage at 15 degrees C. Anim Reprod Sci 122:142–149

    PubMed  CAS  Google Scholar 

  • Zan Bar T, Yehuda R, Hacham T, Krupnik S, Bartoov B (2008) Influence of Campylobacter fetus subsp. fetus on ram sperm cell quality. J Med Microbiol 57:1405–1410

    PubMed  Google Scholar 

  • Zera AJ, Harshman LG (2001) The physiology of life history trade-offs in animals. Annu Rev Ecol Syst 32:95–126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth M. Fedorka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fedorka, K. (2014). Reproductive and Immune System Interactions in the Context of Life History and Sexual Selection Theory. In: Malagoli, D., Ottaviani, E. (eds) Eco-immunology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8712-3_3

Download citation

Publish with us

Policies and ethics