Skip to main content

Computational Intelligence Techniques and Applications

Abstract

Computational intelligence is a group of computational models and tools that encompass elements of learning, adaptation, and/or heuristic optimization. It is used to help study problems that are difficult to solve using conventional computational algorithms. Neural networks, evolutionary computation, and fuzzy systems are the three main pillars of computational intelligence. More recently, emerging areas such as swarm intelligence, artificial immune systems (AIS), support vector machines, rough sets, chaotic systems, and others have been added to the range of computational intelligence techniques. This chapter aims to present an overview of computational intelligence techniques and their applications, focusing on five representative techniques, including neural networks, evolutionary computation, fuzzy systems, swarm intelligence, and AIS.

Keywords

  • Computational intelligence
  • Neural networks
  • Evolutionary computation
  • Fuzzy systems
  • Swarm intelligence
  • Artificial immune systems

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-017-8642-3_1
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-94-017-8642-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   129.00
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4

References

  • Aertsen W, Kint V, van Orshoven J, Özkan K, Muys B (2010) Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecol Model 221(8):1119–1130

    CrossRef  Google Scholar 

  • Afshar MH (2010) A parameter free Continuous Ant Colony Optimization Algorithm for the optimal design of storm sewer networks: constrained and unconstrained approach. Adv Eng Softw 41(2):188–195

    CrossRef  Google Scholar 

  • Alizadeh H, Mousavi SJ (2013) Coupled stochastic soil moisture simulation-optimization model of deficit irrigation. Water Resour Res 49(7):4100–4113

    CrossRef  Google Scholar 

  • Antanasijevia DZ, Pocajt VV, Povrenovia DS, Ristia MA, Peria-Grujia AA (2013) PM.sub.10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization. Sci Total Environ 443:511–519

    CrossRef  Google Scholar 

  • Areerachakul S, Sophatsathit P, Lursinsap C (2013) Integration of unsupervised and supervised neural networks to predict dissolved oxygen concentration in canals. Ecol Model 261–262:1–7

    CrossRef  Google Scholar 

  • Auger A, Hansen N (2011) Theory of evolution strategies: a new perspective. In: Auger A, Doerr B (eds) Theory of randomized search heuristics, foundations and recent developments. World Scientific, Singapore, pp 289–325

    CrossRef  Google Scholar 

  • Azar AT (2010) Adaptive neuro-fuzzy systems. In: Azar AT (ed) Fuzzy systems. InTech, Croatia, pp 85–110

    Google Scholar 

  • Banerjee P, Singh VS, Chatttopadhyay K, Chandra PC, Singh B (2011) Artificial neural network model as a potential alternative for groundwater salinity forecasting. J Hydrol 398(3):212–220

    CAS  CrossRef  Google Scholar 

  • Bao YH, Ren JB (2011) Wetland landscape classification based on the BP neural network in DaLinor Lake Area. Procedia Environ Sci 10:2360–2366

    CrossRef  Google Scholar 

  • Berna HU, Sadan KK (2011) A review of clonal selection algorithm and its applications. Artif Intell Rev 36(2):117–138

    CrossRef  Google Scholar 

  • Blum C, Merkle D (2008) Swarm intelligence: introduction and applications. Springer, Berlin

    CrossRef  Google Scholar 

  • Bui DT, Pradhan B, Lofman O, Revhaug I, Dick OB (2012) Landslide susceptibility mapping at Hoa Binh Province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Comput Geosci 45:199–211

    CrossRef  Google Scholar 

  • Carbajal-Hernández JJ, Sánchez-Fernández LP, Carrasco-Ochoa JA, Martínez-Trinidad JF (2012) Assessment and prediction of air quality using fuzzy logic and autoregressive models. Atmos Environ 60:37–50

    CrossRef  Google Scholar 

  • Chang F, Tsai W, Chen H, Yam RS, Herricks EE (2013) A self-organizing radial basis network for estimating riverine fish diversity. J Hydrol 476:280–289

    CrossRef  Google Scholar 

  • Chau KW (2007) A split-step particle swarm optimization algorithm in river stage forecasting. J Hydrol 346(3):131–135

    CrossRef  Google Scholar 

  • Chou CM (2012) Particle swarm optimization for identifying rainfall-runoff relationships. J Water Resour Protect 4:115–126

    CrossRef  Google Scholar 

  • Cruz-Ramírez M, Hervás-Martínez C, Jurado-Expósito M, López-Granados F (2012) A multi-objective neural network based method for cover crop identification from remote sensed data. Expert Syst Appl 39(11):10038–10048

    CrossRef  Google Scholar 

  • D’haeseleer P, Forrest S, Helman P (1996) An immunological approach to change detection: algorithms, analysis, and implications. In: Proceedings of the IEEE symposium on computer security and privacy. IEEE Computer Society Press, Los Alamitos, CA, pp 110–119

    Google Scholar 

  • Dasgupta D, Forrest S (1999) An anomaly detection algorithm inspired by the immune system. In: Dasgupta D (ed) Artificial immune systems and their applications. Springer, Berlin, pp 262–277

    CrossRef  Google Scholar 

  • de Castro LN, Timmis J (2002) Artificial immune systems: a novel paradigm to pattern recognition. In: Corchado JM, Alonso L, Fyfe C (eds) Artificial neural networks in pattern recognition. SOCO-2002. University of Paisley, Paisley, England, pp 67–84

    Google Scholar 

  • de Castro LN, von Zuben FJ (2001) aiNet: an artificial immune network for data analysis. In: Abbass HA, Sarker RA, Newton CS (eds) Data mining: a heuristic approach (Chapter XII). Idea Group Publishing, Hershey, PA, pp 231–259

    CrossRef  Google Scholar 

  • de Castro LN, von Zuben FJ (2002) Learning and optimization using the clonal selection principle. IEEE Trans Evol Comput 6(3):239–251

    CrossRef  Google Scholar 

  • de la Rosa JJG, Pérez AA, Salas JCP, Leo JGR, Muñoz AM (2011) A novel inference method for local wind conditions using genetic fuzzy systems. Renew Energy 36:1747–1753

    CrossRef  Google Scholar 

  • Dobreva ID, Klein AG (2011) Fractional snow cover mapping through artificial neural network analysis of MODIS surface reflectance. Remote Sens Environ 115(12):3355–3366

    CrossRef  Google Scholar 

  • Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B Cybern 26(1):29–41

    CAS  CrossRef  Google Scholar 

  • Downing K (1998) Using evolutionary computational techniques in environmental modelling. Environ Model Softw 13:519–528

    CrossRef  Google Scholar 

  • Ducheyne EI, de Wulf RR, de Baets B (2004) Single versus multiple objective genetic algorithms for solving the even-flow forest management problem. For Ecol Manage 201(2):259–273

    CrossRef  Google Scholar 

  • Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, New York

    CrossRef  Google Scholar 

  • Engelbrecht AP (2007) Computational intelligence: an introduction. Wiley, Chichester, England

    CrossRef  Google Scholar 

  • Fegh A, Riahi MA, Norouzi GH (2013) Permeability prediction and construction of 3D geological model: application of neural networks and stochastic approaches in an Iranian gas reservoir. Neural Comput Appl 23(6):1763–1770. doi:10.1007/s00521-012-1142-8

    CrossRef  Google Scholar 

  • Fisher B (2003) Fuzzy environmental decision-making: applications to air pollution. Atmos Environ 37(14):1865–1877

    CAS  CrossRef  Google Scholar 

  • Forrest S, Perelson AS, Allen L, Cherukuri R (1994) Self-nonself discrimination in a computer. In: Proceedings of the IEEE symposium on research in security and privacy. IEEE Computer Society Press, Los Alamitos, CA, pp 202–212

    Google Scholar 

  • Gardner MW, Dorling SR (1999) Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmos Environ 33:709–719

    CAS  CrossRef  Google Scholar 

  • Goldberg DE (1989) Genetic algorithm in search, optimization, and machine learning. Addison-Wesley, Reading, MA

    Google Scholar 

  • Gong B, Im J, Mountrakis G (2011) An artificial immune network approach to multi-sensor land use/land cover classification. Remote Sens Environ 115:600–614

    CrossRef  Google Scholar 

  • Güler C, Kurt MA, Alpaslan M, Akbulut C (2012) Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques. J Hydrol 414–415:435–451

    CrossRef  Google Scholar 

  • Hagan MT, Demuth HB, Beale MH (1996) Neural network design. PWS Publishing, Boston

    Google Scholar 

  • Hasni A, Taibi R, Draoui B, Boulard T (2011) Optimization of greenhouse climate model parameters using particle swarm optimization and genetic algorithms. Energy Procedia 6:371–380

    CrossRef  Google Scholar 

  • Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Huo S, He Z, Su J, Xi B, Zhu C (2013) Using artificial neural network models for eutrophication prediction. Procedia Environ Sci 18:310–316

    CAS  CrossRef  Google Scholar 

  • Iliadis LS, Vangeloudh M, Spartalis S (2010) An intelligent system employing an enhanced fuzzy c-means clustering model: application in the case of forest fires. Comput Electron Agric 70(2):276–284

    CrossRef  Google Scholar 

  • Kakaei LE, Moghaddam NA, Ahmadi A (2013) Daily suspended sediment load prediction using artificial neural networks and support vector machines. J Hydrol 478:50–62

    CrossRef  Google Scholar 

  • Kayastha P (2012) Application of fuzzy logic approach for landslide susceptibility mapping in Garuwa sub-basin, East Nepal. Front Earth Sci 6(4):420–432

    CrossRef  Google Scholar 

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol 4. IEEE Press, Piscataway, NJ, pp 1942–1948

    Google Scholar 

  • Konar A (2005) Computational intelligence: principles, techniques and applications. Springer, Berlin

    CrossRef  Google Scholar 

  • Krasnopolsky VM (2013) The application of neural networks in the earth system sciences. Springer, The Netherlands

    CrossRef  Google Scholar 

  • Kuo J, Hsieh M, Lung W, She N (2007) Using artificial neural network for reservoir eutrophication prediction. Ecol Model 200(1):171–177

    CrossRef  Google Scholar 

  • Kusiak A, Zheng H (2010) Optimization of wind turbine energy and power factor with an evolutionary computation algorithm. Energy 35(3):1324–1332

    CrossRef  Google Scholar 

  • Langdon WB, Poli R (2002) Foundations of genetic programming. Springer, Berlin

    CrossRef  Google Scholar 

  • Lek S, Guegan JF (1999) Artificial neural networks as a tool in ecological modelling, an introduction. Ecol Model 120:65–73

    CrossRef  Google Scholar 

  • Lim S, Kim YR, Woo SH, Park D, Park JM (2013) System optimization for eco-design by using monetization of environmental impacts: a strategy to convert bi-objective to single-objective problems. J Clean Prod 39:303–311

    CrossRef  Google Scholar 

  • Liu D, Guo S, Chen X, Shao Q, Ran Q, Song X, Wang Z (2012) A macro-evolutionary multi-objective immune algorithm with application to optimal allocation of water resources in Dongjiang River basins, South China. Stoch Environ Res Risk Assess 26(4):491–507

    CrossRef  Google Scholar 

  • Lohani AK, Kumar R, Singh RD (2012) Hydrological time series modeling: a comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques. J Hydrol 442–443:23–35

    CrossRef  Google Scholar 

  • Ma S, He J, Liu F, Yu Y (2011) Land‐use spatial optimization based on PSO algorithm. Geo‐spat Inf Sci 14:54–61

    CrossRef  Google Scholar 

  • Madani K (2011) Computational intelligence. Springer, Berlin

    CrossRef  Google Scholar 

  • Mantoglou A, Papantoniou M, Giannoulopoulos P (2004) Management of coastal aquifers based on nonlinear optimization and evolutionary algorithms. J Hydrol 297(1):209–228

    CrossRef  Google Scholar 

  • Marin J, Sole RV (1999) Macroevolutionary algorithms: a new optimization method on fitness landscapes. IEEE Trans Evol Comput 3(4):272–286

    CrossRef  Google Scholar 

  • Mas JF (2004) Mapping land use/cover in a tropical coastal area using satellite sensor data, GIS and artificial neural networks. Estuar Coast Shelf Sci 59:219–230

    CrossRef  Google Scholar 

  • Mocq J, St-Hilaire A, Cunjak RA (2013) Assessment of Atlantic salmon (Salmo salar) habitat quality and its uncertainty using a multiple-expert fuzzy model applied to the Romaine River (Canada). Ecol Model 265:14–25

    CrossRef  Google Scholar 

  • Okkan U (2012) Wavelet neural network model for reservoir inflow prediction. Sci Iran 19(6):1445–1455

    CrossRef  Google Scholar 

  • Özçelik R, Diamantopoulou MJ, Crecente-Campo F, Eler U (2013) Estimating Crimean juniper tree height using nonlinear regression and artificial neural network models. For Ecol Manage 306:52–60

    CrossRef  Google Scholar 

  • Özger M (2011) Prediction of ocean wave energy from meteorological variables by fuzzy logic modeling. Expert Syst Appl 38(5):6269–6274

    CrossRef  Google Scholar 

  • Patterson DW (1990) Introduction to artificial intelligence and expert systems. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Piotrowski AP, Napiorkowski JJ (2011) Optimizing neural networks for river flow forecasting—evolutionary computation methods versus the Levenberg–Marquardt approach. J Hydrol 407:12–27

    CrossRef  Google Scholar 

  • Pontin DR, Schliebs S, Worner SP, Watts MJ (2011) Determining factors that influence the dispersal of a pelagic species: a comparison between artificial neural networks and evolutionary algorithms. Ecol Model 222(10):1657–1665

    CrossRef  Google Scholar 

  • Principe JC, Euliano NR, Lefebvre WC (2000) Neural and adaptive systems: fundamentals through simulations. Wiley, New York

    Google Scholar 

  • Ranković V, Radulović J, Radojević I, Ostojić A, Čomić L (2010) Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia. Ecol Model 221(8):1239–1244

    CrossRef  Google Scholar 

  • Record NR, Pershing AJ, Runge JA, Mayo CA, Monger BC, Chen C (2010) Improving ecological forecasts of copepod community dynamics using genetic algorithms. J Mar Syst 82(3):96–110

    CrossRef  Google Scholar 

  • Rezaei F, Safavi H, Ahmadi A (2013) Groundwater vulnerability assessment using fuzzy logic: a case study in the Zayandehrood aquifers, Iran. Environ Manage 51:267–277

    CrossRef  Google Scholar 

  • Riff MC, Alfaro T, Bonnaire X, Grandon C (2008) EA-MP: an evolutionary algorithm for a mine planning problem. In: Proceedings of IEEE congress on evolutionary computation, June 2008, pp 4011–4014

    Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL (eds) Parallel distributed processing: explorations in the microstructure of cognition, vol 1. MIT Press, Cambridge, MA, pp 318–362

    Google Scholar 

  • Sanchez E, Shibata T and Zadeh LA (1997) Genetic algorithms and fuzzy logic systems: soft computing perspectives. World Scientific Pub., Singapore; River Edge, NJ

    Google Scholar 

  • Song K, Park Y, Zheng F, Kang H (2013) The application of Artificial Neural Network (ANN) model to the simulation of denitrification rates in mesocosm-scale wetlands. Ecol Inform 16:10–16

    CrossRef  Google Scholar 

  • Sousa SIV, Martins FG, Alvim-Ferraz MCM, Pereira MC (2007) Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environ Model Softw 22:97–103

    CrossRef  Google Scholar 

  • Torkar D, Zmazek B, Vaupotič J, Kobal I (2010) Application of artificial neural networks in simulating radon levels in soil gas. Chem Geol 270:1–8

    CAS  CrossRef  Google Scholar 

  • Wang W, Xu D, Qiu L, Ma J (2009) Genetic programming for modelling long-term hydrological time series. In: Proceedings of the fifth international conference on natural computation, Aug 2009, vol 4, pp 265–269

    Google Scholar 

  • Wang S, Qian X, Wang QH, Xiong W (2012) Modeling turbidity intrusion processes in flooding season of a canyon-shaped reservoir, South China. Procedia Environ Sci 13:1327–1337

    CrossRef  Google Scholar 

  • Watts MJ, Li Y, Russell BD, Mellin C, Connell SD, Fordham DA (2011) A novel method for mapping reefs and subtidal rocky habitats using artificial neural networks. Ecol Model 222(15):2606–2614

    CrossRef  Google Scholar 

  • Wu CL, Chau KW (2011) Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis. J Hydrol 399(3–4):394–409

    CrossRef  Google Scholar 

  • Xu S, Wu Y (2008) An algorithm for remote sensing image classification based on artificial immune B-cell network. In: The international archives of the photogrammetry, remote sensing and spatial information sciences, vol XXXVII, part B6b, pp 107−112

    Google Scholar 

  • Yagiz S, Karahan H (2011) Prediction of hard rock TBM penetration rate using particle swarm optimization. Int J Rock Mech Mining Sci 48(3):427–433

    CrossRef  Google Scholar 

  • Yang Y, Rosenbaum MS (2003) Artificial neural networks linked to GIS. In: Nikravesh M, Aminzadeh F, Zadeh LA (eds) Developments in petroleum science, vol 51, Soft computing and intelligent data analysis in oil exploration. Elsevier, The Netherlands, pp 633–650

    Google Scholar 

  • Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102

    CrossRef  Google Scholar 

  • Yoo J, Lee Y, Lee C, Kim C (2012) Effective prediction of biodiversity in tidal flat habitats using an artificial neural network. Mar Environ Res 83:1–9. doi:10.1016/j. marenvres.2012.10.001

    CrossRef  Google Scholar 

  • Yu X, Gen M (2010) Introduction to evolutionary algorithms. Springer, New York

    CrossRef  Google Scholar 

  • Zhang W (2010) Computational ecology: artificial neural networks and their applications. World Scientific, Singapore

    CrossRef  Google Scholar 

  • Zhang X, Shan T, Jiao L (2004) SAR image classification based on immune clonal feature selection. In: Mohamed SK, Aurélio CC (eds) Proceedings of image analysis and recognition, vol 3212, Lecture notes in computer science. Springer, Berlin, pp 504–511

    CrossRef  Google Scholar 

  • Zheng H, Li L (2007) An artificial immune approach for vehicle detection from high resolution space imagery. Int J Comput Sci Network Security 7:67–72

    Google Scholar 

  • Zhong Y, Zhang L, Huang B, Li P (2007) A resource limited artificial immune system algorithm for supervised classification of multi/hyper-spectral remote sensing imagery. Int J Remote Sens 28:1665–1686

    CrossRef  Google Scholar 

  • Zimmermann H (2001) Fuzzy set theory and its applications. Kluwer Academic, Boston

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhu, X. (2014). Computational Intelligence Techniques and Applications. In: Islam, T., Srivastava, P., Gupta, M., Zhu, X., Mukherjee, S. (eds) Computational Intelligence Techniques in Earth and Environmental Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8642-3_1

Download citation