Advertisement

Cell-Based System for Identification of Olfactory Receptors

  • Peter Yi Dong
  • Naihua Natalie Gong
  • Hiroaki MatsunamiEmail author
Chapter

Abstract

The discovery and characterization of odorant receptors (ORs) beginning in the early 1990s have opened up the ability to study olfaction from a molecular perspective. Hundreds of OR genes that differ between organisms exist, and each gene codes for a G protein coupled receptor (GPCR) that can be activated by a large variety of odorants. Thus, the process of deorphaning, or identifying the cognate ligand(s) for each receptor, is critical for understanding how smells are perceived. This chapter reviews the usage of heterologous systems and associated accessory proteins for expressing ORs in vitro, notably the luciferase assay system for high-throughput OR screening. This in vitro method of characterizing ORs is also compared to ex vivo preparations, with a discussion of advantages and drawbacks of each supported by experimental evidence.

Keywords

Olfactory Receptor Human Embryonic Kidney Cell Odorant Receptor Calcium Imaging Heterologous System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187PubMedCrossRefGoogle Scholar
  2. 2.
    Zhao H, Ivic L, Otaki JM et al (1998) Functional expression of a mammalian odorant receptor. Science 279:237–242PubMedCrossRefGoogle Scholar
  3. 3.
    DeMaria S, Ngai J (2010) The cell biology of smell. J Cell Biol 191:443–452. doi: 10.1083/jcb.201008163PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Araneda RC, Kini AD, Firestein S (2000) The molecular receptive range of an odorant receptor. Nat Neurosci 3:1248–1255. doi:10.1038/81774PubMedCrossRefGoogle Scholar
  5. 5.
    Krautwurst D, Yau KW, Reed RR (1998) Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95:917–926PubMedCrossRefGoogle Scholar
  6. 6.
    Feinstein P, Mombaerts P (2004) A contextual model for axonal sorting into glomeruli in the mouse olfactory system. Cell 117:817–831. doi:10.1016/j.cell.2004.05.011PubMedCrossRefGoogle Scholar
  7. 7.
    Touhara K, Sengoku S, Inaki K, et al (1999) Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc Natl Acad Sci U S A 96:4040–4045PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Nei M, Niimura Y, Nozawa M (2008) The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 9:951–963. doi:10.1038/nrg2480PubMedCrossRefGoogle Scholar
  9. 9.
    Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723PubMedCrossRefGoogle Scholar
  10. 10.
    Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–218. doi:10.1038/35093026PubMedCrossRefGoogle Scholar
  11. 11.
    Grosmaitre X, Fuss SH, Lee AC et al (2009) SR1, a mouse odorant receptor with an unusually broad response profile. J Neurosci 29:14545–14552. doi:10.1523/JNEUROSCI.2752-09.2009PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Nara K, Saraiva LR, Ye X, Buck LB (2011) A large-scale analysis of odor coding in the olfactory epithelium. J Neurosci 31:9179–9191. doi:10.1523/JNEUROSCI.1282-11.2011PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Saito H, Chi Q, Zhuang H et al. (2009) Odor coding by a Mammalian receptor repertoire. Sci Signal 2:ra9. doi:10.1126/scisignal.2000016PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Keller A, Zhuang H, Chi Q et al (2007) Genetic variation in a human odorant receptor alters odour perception. Nature 449:468–472. doi:10.1038/nature06162PubMedCrossRefGoogle Scholar
  15. 15.
    Nagashima A, Touhara K (2010) Enzymatic conversion of odorants in nasal mucus affects olfactory glomerular activation patterns and odor perception. J Neurosci 30:16391–16398. doi:10.1523/JNEUROSCI.2527-10.2010PubMedCrossRefGoogle Scholar
  16. 16.
    Sakano H (2010) Neural map formation in the mouse olfactory system. Neuron 67:530–542. doi:10.1016/j.neuron.2010.07.003PubMedCrossRefGoogle Scholar
  17. 17.
    Mombaerts P, Wang F, Dulac C et al (1996) Visualizing an olfactory sensory map. Cell 87:675–686PubMedCrossRefGoogle Scholar
  18. 18.
    Bozza T, Feinstein P, Zheng C, Mombaerts P (2002) Odorant receptor expression defines functional units in the mouse olfactory system. J Neurosci 22:3033–3043PubMedGoogle Scholar
  19. 19.
    Oka Y, Katada S, Omura M et al (2006) Odorant receptor map in the mouse olfactory bulb: in vivo sensitivity and specificity of receptor-defined glomeruli. Neuron 52:857–869. doi:10.1016/j.neuron.2006.10.019PubMedCrossRefGoogle Scholar
  20. 20.
    Grosmaitre X, Vassalli A, Mombaerts P et al (2006) Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: a patch clamp analysis in gene-targeted mice. Proc Natl Acad Sci U S A 103:1970–1975. doi:10.1073/pnas.0508491103PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Ressler KJ, Sullivan SL, Buck LB (1994) Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79:1245–1255PubMedCrossRefGoogle Scholar
  22. 22.
    Tan J, Savigner A, Ma M, Luo M (2010) Odor information processing by the olfactory bulb analyzed in gene-targeted mice. Neuron 65:912–926. doi:10.1016/j.neuron.2010.02.011PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Lu M, Echeverri F, Moyer BD (2003) Endoplasmic reticulum retention, degradation, and aggregation of olfactory G-protein coupled receptors. Traffic 4:416–433PubMedCrossRefGoogle Scholar
  24. 24.
    Shepard BD, Natarajan N, Protzko RJ et al (2013) A cleavable N-terminal signal peptide promotes widespread olfactory receptor surface expression in HEK293T cells. PLoS ONE 8:e68758. doi:10.1371/journal.pone.0068758PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Brady AE, Limbird LE (2002) G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell Signal 14:297–309PubMedCrossRefGoogle Scholar
  26. 26.
    Saito H, Kubota M, Roberts RW et al (2004) RTP family members induce functional expression of mammalian odorant receptors. Cell 119:679–691. doi:10.1016/j.cell.2004.11.021PubMedCrossRefGoogle Scholar
  27. 27.
    Dannecker Von LEC, Mercadante AF, Malnic B (2006) Ric-8B promotes functional expression of odorant receptors. Proc Natl Acad Sci U S A 103:9310–9314. doi:10.1073/pnas.0600697103CrossRefGoogle Scholar
  28. 28.
    Zhuang H, Matsunami H (2007) Synergism of accessory factors in functional expression of mammalian odorant receptors. J Biol Chem 282:15284–15293. doi:10.1074/jbc.M700386200PubMedCrossRefGoogle Scholar
  29. 29.
    Li YR, Matsunami H (2011) Activation state of the M3 muscarinic acetylcholine receptor modulates mammalian odorant receptor signaling. Sci Signal 4:ra1. doi:10.1126/scisignal.2001230PubMedCentralPubMedGoogle Scholar
  30. 30.
    Zhuang H, Matsunami H (2008) Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nat Protoc 3:1402–1413. doi:10.1038/nprot.2008.120PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Katada S, Nakagawa T, Kataoka H, Touhara K (2003) Odorant response assays for a heterologously expressed olfactory receptor. Biochem Biophys Res Commun 305:964–969PubMedCrossRefGoogle Scholar
  32. 32.
    Ronnett GV, Moon C (2002) G proteins and olfactory signal transduction. Annu Rev Physiol 64:189–222. doi:10.1146/annurev.physiol.64.082701.102219PubMedCrossRefGoogle Scholar
  33. 33.
    Speca DJ, Lin DM, Sorensen PW et al (1999) Functional identification of a goldfish odorant receptor. Neuron 23:487–498PubMedCrossRefGoogle Scholar
  34. 34.
    Touhara K (2007) Deorphanizing vertebrate olfactory receptors: recent advances in odorant-response assays. Neurochem Int 51:132–139. doi:10.1016/j.neuint.2007.05.020PubMedCrossRefGoogle Scholar
  35. 35.
    Wetzel CH, Oles M, Wellerdieck C et al (1999) Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus Laevis oocytes. J Neurosci 19:7426–7433PubMedGoogle Scholar
  36. 36.
    Wetzel CH, Behrendt HJ, Gisselmann G et al (2001) Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system. Proc Natl Acad Sci U S A 98:9377–9380. doi:10.1073/pnas.151103998PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Abaffy T, Matsunami H, Luetje CW (2006) Functional analysis of a mammalian odorant receptor subfamily. J Neurochem 97:1506–1518. doi:10.1111/j.1471-4159.2006.03859.xPubMedCrossRefGoogle Scholar
  38. 38.
    Abaffy T, Malhotra A, Luetje CW (2007) The molecular basis for ligand specificity in a mouse olfactory receptor: a network of functionally important residues. J Biol Chem 282:1216–1224. doi:10.1074/jbc.M609355200PubMedCrossRefGoogle Scholar
  39. 39.
    Yoshikawa K, Nakagawa H, Mori N et al (2013) An unsaturated aliphatic alcohol as a natural ligand for a mouse odorant receptor. Nat Chem Biol 9:160–162. doi:10.1038/nchembio.1164PubMedCrossRefGoogle Scholar
  40. 40.
    George ST, Arbabian MA, Ruoho AE et al (1989) High-efficiency expression of mammalian beta-adrenergic receptors in baculovirus-infected insect cells. Biochem Biophys Res Commun 163:1265–1269PubMedCrossRefGoogle Scholar
  41. 41.
    Raming K, Krieger J, Strotmann J et al (1993) Cloning and expression of odorant receptors. Nature 361:353–356. doi:10.1038/361353a0PubMedCrossRefGoogle Scholar
  42. 42.
    Kiely A, Authier A, Kralicek AV et al (2007) Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells. J Neurosci Methods 159:189–194. doi:10.1016/j.jneumeth.2006.07.005PubMedCrossRefGoogle Scholar
  43. 43.
    Smart R, Kiely A, Beale M et al (2008) Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol 38:770–780. doi:10.1016/j.ibmb.2008.05.002PubMedCrossRefGoogle Scholar
  44. 44.
    Kiefer H, Krieger J, Olszewski JD et al (1996) Expression of an olfactory receptor in Escherichia coli: purification, reconstitution, and ligand binding. Biochemistry 35:16077–16084. doi:10.1021/bi9612069PubMedCrossRefGoogle Scholar
  45. 45.
    Shirokova E, Schmiedeberg K, Bedner P et al (2005) Identification of specific ligands for orphan olfactory receptors. G protein-dependent agonism and antagonism of odorants. J Biol Chem 280:11807–11815. doi:10.1074/jbc.M411508200PubMedCrossRefGoogle Scholar
  46. 46.
    Oka Y, Takai Y, Touhara K (2009) Nasal airflow rate affects the sensitivity and pattern of glomerular odorant responses in the mouse olfactory bulb. J Neurosci 29:12070–12078. doi:10.1523/JNEUROSCI.1415-09.2009PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Peter Yi Dong
    • 1
    • 2
  • Naihua Natalie Gong
    • 1
  • Hiroaki Matsunami
    • 1
    • 3
    Email author
  1. 1.Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamUSA
  2. 2.Department of NeuroscienceUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaUSA
  3. 3.Department of NeurobiologyDuke Institute for Brain Sciences, Duke University Medical CenterDurhamUSA

Personalised recommendations