Odorant-Receptor Interaction

  • Xubo Su
  • Hiroaki Matsunami
  • Hanyi ZhuangEmail author


Odorant-receptor interactions constitute a key step in the olfactory detection of chemical compounds. Various studies support the combinatorial coding of olfaction, in which each odorant activates an array of odorant receptors and each odorant receptor is capable of recognizing multiple odorants, while large-scale studies involving numerous odorants and odorant receptors help to resolve the tuning specificities of receptor repertoires. In the meantime, the proteinaceous content of the nasal mucus, including odorant binding proteins and different types of xenobiotic-metabolizing enzymes, also contributes to odorant receptor activation by transporting, concentrating, converting, and/or ultimately removing odorants from nasal mucosa. In addition, the presence of metal ions, notably copper ions, is known to be important for the activation of odorant receptors for certain types of metal-coordinating odorants. Finally, prediction algorithms based on odorant properties and receptor structures are becoming increasingly feasible for investigating detailed mechanisms involved in odorant-receptor interactions.


Olfactory Bulb Odorant Receptor Olfactory Sensory Neuron Isovaleric Acid Combinatorial Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are indebted to Dr. Tai Hyun Park for the invitation to contribute to the book. Our work described here is supported by grants from National Institutes of Health (to H.M.), Chinese National Natural Science Foundation, the National Basic Research Program of China’s 973 Program, Shanghai Municipal Education Commission, Shanghai Education Development Foundation, the Science and Technology Commission of Shanghai (all to H.Z.), and Shanghai Jiaotong University School of Medicine (to X.S.).


  1. 1.
    Malnic B, Godfrey PA, Buck LB (2004) The human olfactory receptor gene family. Proc Natl Acad Sci U S A 101(8):2584–2589PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Godfrey PA, Malnic B, Buck LB (2004) The mouse olfactory receptor gene family. Proc Natl Acad Sci U S A 10(7):2156–2161CrossRefGoogle Scholar
  3. 3.
    Niimura Y, Nei M (2005) Evolutionary changes of the number of olfactory receptor genes in the human and mouse lineages. Gene 346:23–28PubMedCrossRefGoogle Scholar
  4. 4.
    Polak EH (1973) Multiple profile-multiple receptor site model for vertebrate olfaction. J Theor Biol 40:469–484PubMedCrossRefGoogle Scholar
  5. 5.
    Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723PubMedCrossRefGoogle Scholar
  6. 6.
    Kajiya K, Inaki K, Tanaka M, Haga T, Kataoka H, Touhara K (2001) Molecular bases of odor discrimination: Reconstitution of olfactory receptors that recognize overlapping sets of odorants. J Neurosci 21(16):6018–6025PubMedGoogle Scholar
  7. 7.
    Araneda RC, Kini AD, Firestein S (2000) The molecular receptive range of an odorant receptor. Nat Neurosci 3(12):1248–1255PubMedCrossRefGoogle Scholar
  8. 8.
    Araneda RC, Peterlin Z, Zhang X, Chesler A, Firestein S (2004) A pharmacological profile of the aldehyde receptor repertoire in rat olfactory epithelium. J Physiol 555(Pt 3):743–756PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Katada S, Hirokawa T, Oka Y, Suwa M, Touhara K (2005) Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 25(7):1806–1815PubMedCrossRefGoogle Scholar
  10. 10.
    Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH, Zimmer RK, Hatt H (2003) Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299(5615):2054–2058PubMedCrossRefGoogle Scholar
  11. 11.
    Gaillard I, Rouquier S, Pin JP, Mollard P, Richard S, Barnabe C, Demaille J, Giorgi D (2002) A single olfactory receptor specifically binds a set of odorant molecules. Eur J Neurosci 15(3):409–418PubMedCrossRefGoogle Scholar
  12. 12.
    Wetzel CH, Oles M, Wellerdieck C, Kuczkowiak M, Gisselmann G, Hatt H (1999) Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus Laevis oocytes. J Neurosci 19(17):7426–7433PubMedGoogle Scholar
  13. 13.
    Bozza T, Feinstein P, Zheng C, Mombaerts P (2002) Odorant receptor expression defines functional units in the mouse olfactory system. J Neurosci 22(8):3033–3043PubMedGoogle Scholar
  14. 14.
    Saito H, Kubota M, Roberts RW, Chi Q, Matsunami H (2004) RTP family members induce functional expression of mammalian odorant receptors. Cell 119(5):679–691PubMedCrossRefGoogle Scholar
  15. 15.
    Zhuang H, Matsunami H (2007) Synergism of accessory factors in functional expression of mammalian odorant receptors. J Biol Chem 282(20):15284–15293PubMedCrossRefGoogle Scholar
  16. 16.
    Zhuang H, Matsunami H (2008) Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nat Protoc 3(9):1402–1413PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2(60):ra9.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Nara K, Saraiva LR, Ye X, Buck LB (2011) A large-scale analysis of odor coding in the olfactory epithelium. J Neurosci 31(25):9179–9191PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Oka Y, Katada S, Omura M, Suwa M, Yoshihara Y, Touhara K (2006) Odorant receptor map in the mouse olfactory bulb: in vivo sensitivity and specificity of receptor-defined glomeruli. Neuron 52(5):857–869PubMedCrossRefGoogle Scholar
  20. 20.
    Getchell TV, Margolis FL, Getchell ML (1984) Perireceptor and receptor events in vertebrate olfaction. Prog Neurobiol 23(4):317–345PubMedCrossRefGoogle Scholar
  21. 21.
    Debat H, Eloit C, Blon F, Sarazin B, Henry C, Huet JC, Trotier D, Pernollet JC (2007) Identification of human olfactory cleft mucus proteins using proteomic analysis. J Proteome Res 6(5):1985–1996PubMedCrossRefGoogle Scholar
  22. 22.
    Mayer U, Kuller A, Daiber PC, Neudorf I, Warnken U, Schnolzer M, Frings S, Mohrlen F (2009) The proteome of rat olfactory sensory cilia. Proteomics 9(2):322–334PubMedCrossRefGoogle Scholar
  23. 23.
    Pelosi P, Baldaccini NE, Pisanelli AM (1982) Identification of a specific olfactory receptor for 2-isobutyl-3-methoxypyrazine. Biochem J 201(1):245–248PubMedCentralPubMedGoogle Scholar
  24. 24.
    Flower DR, North AC, Sansom CE (2000) The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta 1482(1-2):9–24PubMedCrossRefGoogle Scholar
  25. 25.
    Steinbrecht RA (1998) Odorant-binding proteins: expression and function. Ann N Y Acad Sci 855:323–332PubMedCrossRefGoogle Scholar
  26. 26.
    Briand L, Nespoulous C, Perez V, Remy JJ, Huet JC, Pernollet JC (2000) Ligand-binding properties and structural characterization of a novel rat odorant-binding protein variant. Eur J Biochem 267(10):3079–3089PubMedCrossRefGoogle Scholar
  27. 27.
    Pevsner J, Hou V, Snowman AM, Snyder SH (1990) Odorant-binding protein. Characterization of ligand binding. J Biol Chem 265(11):6118–6125PubMedGoogle Scholar
  28. 28.
    Herent MF, Collin S, Pelosi P (1995) Affinities of nutty and green-smelling pyrazines and thiazoles to odorant-binding proteins, in relation with their lipophilicity. Chem Senses 20(6):601–608PubMedCrossRefGoogle Scholar
  29. 29.
    Tcatchoff L, Nespoulous C, Pernollet JC, Briand L (2006) A single lysyl residue defines the binding specificity of a human odorant-binding protein for aldehydes. FEBS Lett 580(8):2102–2108PubMedCrossRefGoogle Scholar
  30. 30.
    Lacazette E, Gachon AM, Pitiot G (2000) A novel human odorant-binding protein gene family resulting from genomic duplicons at 9q34: differential expression in the oral and genital spheres. Hum Mol Genet 9(2):289–301PubMedCrossRefGoogle Scholar
  31. 31.
    Pes D, Pelosi P (1995) Odorant-binding proteins of the mouse. Comp Biochem Physiol B Biochem Mol Biol 112(3):471–479PubMedCrossRefGoogle Scholar
  32. 32.
    Matarazzo V, Zsurger N, Guillemot JC, Clot-Faybesse O, Botto JM, Dal Farra C, Crowe M, Demaille J, Vincent JP, Mazella J, Ronin C (2002) Porcine odorant-binding protein selectively binds to a human olfactory receptor. Chem Senses 27(8):691–701PubMedCrossRefGoogle Scholar
  33. 33.
    Strotmann J, Breer H (2011) Internalization of odorant-binding proteins into the mouse olfactory epithelium. Histochem Cell Biol 136(3):357–369PubMedCrossRefGoogle Scholar
  34. 34.
    Mori I, Nishiyama Y, Yokochi T, Kimura Y (2005) Olfactory transmission of neurotropic viruses. J Neurovirol 11(2):129–137PubMedCrossRefGoogle Scholar
  35. 35.
    Minn A, Leclerc S, Heydel JM, Minn AL, Denizcot C, Cattarelli M, Netter P, Gradinaru D (2002) Drug transport into the mammalian brain: the nasal pathway and its specific metabolic barrier. J Drug Target 10(4):285–296PubMedCrossRefGoogle Scholar
  36. 36.
    Dahl AR, Briner TJ (1980) Biological fate of a representative lipophilic metal compound (ferrocene) deposited by inhalation in the respiratory tract of rats. Toxicol App Pharmacol 56(2):232–239CrossRefGoogle Scholar
  37. 37.
    Iyanagi T (2007) Molecular mechanism of phase I and phase II drug-metabolizing enzymes: implications for detoxification. Int Rev Cytol 260:35–112PubMedCrossRefGoogle Scholar
  38. 38.
    Ayrton A, Morgan P (2001) Role of transport proteins in drug absorption, distribution and excretion. Xenobiotica 31(8–9):469–497PubMedCrossRefGoogle Scholar
  39. 39.
    Bogdanffy MS, Randall HW, Morgan KT (1987) Biochemical quantitation and histochemical localization of carboxylesterase in the nasal passages of the Fischer-344 rat and B6C3F1 mouse. Toxicol Appl Pharmacol 88(2):183–194PubMedCrossRefGoogle Scholar
  40. 40.
    Kurosaki M, Terao M, Barzago MM, Bastone A, Bernardinello D, Salmona M, Garattini E (2004) The aldehyde oxidase gene cluster in mice and rats. Aldehyde oxidase homologue 3, a novel member of the molybdo-flavoenzyme family with selective expression in the olfactory mucosa. J Biol Chem 279(48):50482–50498PubMedCrossRefGoogle Scholar
  41. 41.
    Thornton-Manning JR, Nikula KJ, Hotchkiss JA, Avila KJ, Rohrbacher KD, Ding X, Dahl AR (1997) Nasal cytochrome P450 2A: identification, regional localization, and metabolic activity toward hexamethylphosphoramide, a known nasal carcinogen. Toxicol Appl Pharmacol 142(1):22–30PubMedCrossRefGoogle Scholar
  42. 42.
    Kimoto M, Iwai S, Maeda T, Yura Y, Fernley RT, Ogawa Y (2004) Carbonic anhydrase VI in the mouse nasal gland. J Histochem Cytochem 52(8):1057–1062PubMedCrossRefGoogle Scholar
  43. 43.
    Durand N, Carot-Sans G, Chertemps T, Bozzolan F, Party V, Renou M, Debernard S, Rosell G, Maibeche-Coisne M (2010) Characterization of an antennal carboxylesterase from the pest moth Spodoptera littoralis degrading a host plant odorant. PLoS One 5(11):e15026PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Ishida Y, Leal WS (2005) Rapid inactivation of a moth pheromone. Proc Natl Acad Sci U S A 102(39):14075–14079PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Rybczynski R, Reagan J, Lerner MR (1989) A pheromone-degrading aldehyde oxidase in the antennae of the moth Manduca sexta. J Neurosci 9(4):1341–1353PubMedGoogle Scholar
  46. 46.
    Ishida Y, Leal WS (2008) Chiral discrimination of the Japanese beetle sex pheromone and a behavioral antagonist by a pheromone-degrading enzyme. Proc Natl Acad Sci U S A 105(26):9076–9080PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Maibeche-Coisne M, Nikonov AA, Ishida Y, Jacquin-Joly E, Leal WS (2004) Pheromone anosmia in a scarab beetle induced by in vivo inhibition of a pheromone-degrading enzyme. Proc Natl Acad Sci U S A 101(31):11459–11464PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Zhuo X, Gu J, Zhang QY, Spink DC, Kaminsky LS, Ding X (1999) Biotransformation of coumarin by rodent and human cytochromes P-450: metabolic basis of tissue-selective toxicity in olfactory mucosa of rats and mice. J Pharmacol Exp Ther 288(2):463–471PubMedGoogle Scholar
  49. 49.
    Nagashima A, Touhara K (2010) Enzymatic conversion of odorants in nasal mucus affects olfactory glomerular activation patterns and odor perception. J Neurosci 30(48):16391–16398PubMedCrossRefGoogle Scholar
  50. 50.
    Thiebaud N, Veloso DSilvaS, Jakob I, Sicard G, Chevalier J, Menetrier F, Berdeaux O, Artur Y, Heydel JM, Le Bon AM (2013) Odorant metabolism catalyzed by olfactory mucosal enzymes influences peripheral olfactory responses in rats. PLoS One 8(3):e59547PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Lazard D, Zupko K, Poria Y, Nef P, Lazarovits J, Horn S, Khen M, Lancet D (1991) Odorant signal termination by olfactory UDP glucuronosyl transferase. Nature 349(6312):790–793PubMedCrossRefGoogle Scholar
  52. 52.
    Kinouchi K, Standifer KM, Pasternak GW (1990) Modulation of mu 1, mu 2, and delta opioid binding by divalent cations. Biochem Pharmacol 40(2):382–384PubMedCrossRefGoogle Scholar
  53. 53.
    Gerlach LO, Jakobsen JS, Jensen KP, Rosenkilde MR, Skerlj RT, Ryde U, Bridger GJ, Schwartz TW (2003) Metal ion enhanced binding of AMD3100 to Asp262 in the CXCR4 receptor. Biochemistry 42(3):710–717PubMedCrossRefGoogle Scholar
  54. 54.
    Holst B, Elling CE, Schwartz TW (2002) Metal ion-mediated agonism and agonist enhancement in melanocortin MC1 and MC4 receptors. J Biol Chem 277(49):47662–47670PubMedCrossRefGoogle Scholar
  55. 55.
    Crabtree RH (1978) Copper(I)—possible olfactory binding-site. J Inorg Nucl Chem 40(7):1453CrossRefGoogle Scholar
  56. 56.
    Henkin RI, Bradley DF (1969) Regulation of taste acuity by thiols and metal ions. Proc Natl Acad Sci U S A 62(1):30–37PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Day JC (1978) New nitrogen bases with severe steric hindrance due to flanking tert-butyl groups—cis-2,6-di-tert-butylpiperidine—possible steric blocking of olfaction. J Org Chem 43(19):3646–3649CrossRefGoogle Scholar
  58. 58.
    Wang J, Luthey-Schulten ZA, Suslick KS (2003) Is the olfactory receptor a metalloprotein? Proc Natl Acad Sci U S A 100(6):3035–3039PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Duan X, Block E, Li Z, Connelly T, Zhang J, Huang Z, Su X, Pan Y, Wu L, Chi Q, Thomas S, Zhang S, Ma M, Matsunami H, Chen GQ, Zhuang H (2012) Crucial role of copper in detection of metal-coordinating odorants. Proc Natl Acad Sci U S A 109(9):3492–3497PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Lin DY, Zhang SZ, Block E, Katz LC (2005) Encoding social signals in the mouse main olfactory bulb. Nature 434(7032):470–477PubMedCrossRefGoogle Scholar
  61. 61.
    Tian H, Ma M (2008) Differential development of odorant receptor expression patterns in the olfactory epithelium: a quantitative analysis in the mouse septal organ. Dev Neurobiol 68(4):476–486PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Viswaprakash N, Dennis JC, Globa L, Pustovyy O, Josephson EM, Kanju P, Morrison EE, Vodyanoy VJ (2009) Enhancement of odorant-induced responses in olfactory receptor neurons by zinc nanoparticles. Chem Senses 34(7):547–557PubMedCrossRefGoogle Scholar
  63. 63.
    Triller A, Boulden EA, Churchill A, Hatt H, Englund J, Spehr M, Sell CS (2008) Odorant-receptor interactions and odor percept: a chemical perspective. Chem Biodivers 5(6):862–886PubMedCrossRefGoogle Scholar
  64. 64.
    Khan RM, Luk CH, Flinker A, Aggarwal A, Lapid H, Haddad R, Sobel N (2007) Predicting odor pleasantness from odorant structure: pleasantness as a reflection of the physical world. J Neurosci 27(37):10015–10023PubMedCrossRefGoogle Scholar
  65. 65.
    Haddad R, Khan R, Takahashi YK, Mori K, Harel D, Sobel N (2008) A metric for odorant comparison. Nat Methods 5(5):425–429PubMedCrossRefGoogle Scholar
  66. 66.
    Schmuker M, de Bruyne M, Hahnel M, Schneider G (2007) Predicting olfactory receptor neuron responses from odorant structure. Chem Cent J 1:11PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Liu X, Su X, Wang F, Huang Z, Wang Q, Li Z, Zhang R, Wu L, Pan Y, Chen Y, Zhuang H, Chen G, Shi T, Zhang J (2011) ODORactor: a web server for deciphering olfactory coding. Bioinformatics 27(16):2302–2303PubMedCrossRefGoogle Scholar
  68. 68.
    Zozulya S, Echeverri F, Nguyen T (2001) The human olfactory receptor repertoire. Genome Biol 2(6):RESEARCH0018PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5(2):124–133PubMedGoogle Scholar
  70. 70.
    Man O, Gilad Y, Lancet D (2004) Prediction of the odorant binding site of olfactory receptor proteins by human-mouse comparisons. Protein Sci 13(1):240–254PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Singer MS (2000) Analysis of the molecular basis for octanal interactions in the expressed rat 17 olfactory receptor. Chem Senses 25(2):155–165PubMedCrossRefGoogle Scholar
  72. 72.
    Hall SE, Floriano WB, Vaidehi N, Goddard WA 3rd (2004) Predicted 3-D structures for mouse I7 and rat I7 olfactory receptors and comparison of predicted odor recognition profiles with experiment. Chem Senses 29(7):595–616PubMedCrossRefGoogle Scholar
  73. 73.
    Kurland MD, Newcomer MB, Peterlin Z, Ryan K, Firestein S, Batista VS (2010) Discrimination of saturated aldehydes by the rat I7 olfactory receptor. Biochemistry 49(30):6302–6304PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of PathophysiologyShanghai Jiaotong University School of MedicineShanghaiP. R. China
  2. 2.Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamUSA
  3. 3.Department of NeurobiologyDuke University Medical CenterDurhamUSA
  4. 4.Institute of Health SciencesShanghai Jiaotong University School of Medicine/Shanghai Institutes for Biological Sciences of Chinese Academy of SciencesShanghaiP. R. China

Personalised recommendations