Mechanisms of Olfaction

  • Ruchira SharmaEmail author
  • Hiroaki Matsunami


Molecular mechanisms of olfaction have been intensively studied in the last quarter century. Receptors by which olfactory stimuli are detected are vastly different between different animal species and even between different olfactory organs of the same species. This chapter includes a description of the anatomy of the mammalian olfactory system and an overview of the receptors. The signaling mechanism and expression pattern of these receptors is discussed along with how the brain decodes olfactory information gathered from the environment and then translates these signals into behaviors. This chapter also contains brief comparison of the fish, insect and nematode olfactory receptors.


Olfactory Bulb Olfactory Epithelium Olfactory System Antennal Lobe Odorant Binding Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Helena You and Naihua Natalie Gong for editing. NIH supports the work of the Matsunami lab.


  1. 1.
    Keene AC, Waddell S (2007) Drosophila olfactory memory: single genes to complex neural circuits. Nat Rev Neurosci 8(5):341–354PubMedGoogle Scholar
  2. 2.
    Herz R (2007) The scent of desire: discovering our enigmatic sense of smell. HarperCollinsGoogle Scholar
  3. 3.
    Kobayakawa K et al (2007) Innate versus learned odour processing in the mouse olfactory bulb. Nature 450(7169):503–508PubMedGoogle Scholar
  4. 4.
    Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74(3):515–527PubMedGoogle Scholar
  5. 5.
    Leypold BG et al (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci 99(9):6376–6381PubMedCentralPubMedGoogle Scholar
  6. 6.
    Munger SD et al (2010) An olfactory subsystem that detects carbon disulfide and mediates food-related social learning. Curr Biol 20(16):1438–1444PubMedCentralPubMedGoogle Scholar
  7. 7.
    Romero PR, Beltramino CA, Carrer HF (1990) Participation of the olfactory system in the control of approach behavior of the female rat to the male. Physiol Behav 47(4):685–690PubMedGoogle Scholar
  8. 8.
    Saito TR et al (1990) Nursing behavior in lactating rats-the role of the vomeronasal organ, Jikken dobutsu. Exp Anim 39(1):109–111Google Scholar
  9. 9.
    Troemel ER, Kimmel BE, Bargmann CI (1997) Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell 91(2):161–169PubMedGoogle Scholar
  10. 10.
    Bernstein H, Moyer K (1970) Aggressive behavior in the rat: effects of isolation, and olfactory bulb lesions. Brain Res 20(1):75–84PubMedGoogle Scholar
  11. 11.
    Fleming AS, Rosenblatt JS (1974) Olfactory regulation of maternal behavior in rats: I. Effects of olfactory bulb removal in experienced and inexperienced lactating and cycling females. J Comp Physiol Psychol 86(2):221PubMedGoogle Scholar
  12. 12.
    Heimer L, Larsson K (1967) Mating behavior of male rats after olfactory bulb lesions. Physiol Behav 2(2):207–209Google Scholar
  13. 13.
    Ansari K, Johnson A (1975) Olfactory function in patients with Parkinson’s disease. J Chronic Dis 28(9):493–497PubMedGoogle Scholar
  14. 14.
    Mesholam RI et al (1998) Olfaction in neurodegenerative disease: a meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s diseases. Arch Neurol 55(1):84PubMedGoogle Scholar
  15. 15.
    Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1):175–187PubMedGoogle Scholar
  16. 16.
    Dulac C, Axel R (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell 83(2):195–206PubMedGoogle Scholar
  17. 17.
    Bean NJ (1982) Modulation of agonistic behavior by the dual olfactory system in male mice. Physiol Behav 29(3):433–437PubMedGoogle Scholar
  18. 18.
    Papes F, Logan DW, Stowers L (2010) The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141(4):692–703PubMedCentralPubMedGoogle Scholar
  19. 19.
    Fleischer J et al (2006) A novel population of neuronal cells expressing the olfactory marker protein (OMP) in the anterior/dorsal region of the nasal cavity. Histochem Cell Biol 125(4):337–349PubMedGoogle Scholar
  20. 20.
    Fleischer J et al (2006) Olfactory receptors and signalling elements in the Grueneberg ganglion. J Neurochem 98(2):543–554PubMedGoogle Scholar
  21. 21.
    Brechbühl J, Klaey M, Broillet M-C (2008) Grueneberg ganglion cells mediate alarm pheromone detection in mice. Science 321(5892):1092–1095PubMedGoogle Scholar
  22. 22.
    Tian H, Ma M (2004) Molecular organization of the olfactory septal organ. J Neurosci 24(38):8383–8390PubMedCentralPubMedGoogle Scholar
  23. 23.
    Storan MJ, Key B (2006) Septal organ of Grüneberg is part of the olfactory system. J Comp Neurol 494(5):834–844PubMedGoogle Scholar
  24. 24.
    Buck LB (1996) Information coding in the vertebrate olfactory system. Annu Rev Neurosci 19(1):517–544PubMedGoogle Scholar
  25. 25.
    Shipley M, Ennis M, Puche A (2003) The olfactory system. In: Conn PM (ed) Neuroscience in medicine. Humana Press, p 579–593Google Scholar
  26. 26.
    Lancet D (1986) Vertebrate olfactory reception. Annu Rev Neurosci 9(1):329–355PubMedGoogle Scholar
  27. 27.
    Doty RL (2001) Olfaction. Annu Rev Psychol 52(1):423–452PubMedGoogle Scholar
  28. 28.
    Laissue P et al (1999) Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J Comp Neurol 405(4):543–552PubMedGoogle Scholar
  29. 29.
    Margolis FL (1972) A brain protein unique to the olfactory bulb. Proc Natl Acad Sci 69(5):1221–1224PubMedCentralPubMedGoogle Scholar
  30. 30.
    Mombaerts P et al (1996) Visualizing an olfactory sensory map. Cell 87(4):675–686PubMedGoogle Scholar
  31. 31.
    Mombaerts P (2006) Axonal wiring in the mouse olfactory system. Annu Rev Cell Dev Biol 22(1):713–737PubMedGoogle Scholar
  32. 32.
    Ressler KJ, Sullivan SL, Buck LB (1994) A molecular dissection of spatial patterning in the olfactory system. Curr Opin Neurobiol 4(4):588–596PubMedGoogle Scholar
  33. 33.
    Lancet D, Ben-Arie N (1993) Olfactory receptors. Curr Biol 3(10):668PubMedGoogle Scholar
  34. 34.
    Ben-Arie N et al (1994) Olfactory receptor gene cluster on human chromosome 17: possible duplication of an ancestral receptor repertoire. Hum Mol Genet 3(2):229–235PubMedGoogle Scholar
  35. 35.
    Kobilka B (1992) Adrenergic receptors as models for G protein-coupled receptors. Annu Rev Neurosci 15(1):87–114PubMedGoogle Scholar
  36. 36.
    Belluscio L et al (1998) Mice deficient in Golf are anosmic. Neuron 20(1):69–81PubMedGoogle Scholar
  37. 37.
    Wong ST et al (2000) Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27(3):487–497PubMedGoogle Scholar
  38. 38.
    Imai T, Sakano H (2008) Odorant receptor-mediated signaling in the mouse. Curr Opin Neurobiol 18(3):251–260PubMedGoogle Scholar
  39. 39.
    Pace U et al (1985) Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature 316(6025):255–258PubMedGoogle Scholar
  40. 40.
    Sklar P, Anholt R, Snyder S (1986) The odorant-sensitive adenylate cyclase of olfactory receptor cells. Differential stimulation by distinct classes of odorants. J Biol Chem 261(33):15538–15543PubMedGoogle Scholar
  41. 41.
    Brunet LJ, Gold GH, Ngai J (1996) General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide gated cation channel. Neuron 17(4):681–693PubMedGoogle Scholar
  42. 42.
    Firestein S, Werblin F (1989) Odor-induced membrane currents in vertebrate-olfactory receptor neurons. Science 244(4900):79–82PubMedGoogle Scholar
  43. 43.
    Reisert J et al (2005) Mechanism of the excitatory Cl response in mouse olfactory receptor neurons. Neuron 45(4):553–561PubMedCentralPubMedGoogle Scholar
  44. 44.
    Noé J et al (1997) Sodium/calcium exchanger in rat olfactory neurons. Neurochem Int 30(6):523–531PubMedGoogle Scholar
  45. 45.
    Stephan AB et al (2011) The Na + /Ca2 + exchanger NCKX4 governs termination and adaptation of the mammalian olfactory response. Nat Neurosci 15(1):131–137PubMedCentralPubMedGoogle Scholar
  46. 46.
    Nakamura T, Gold GH (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325(6103):442–444PubMedGoogle Scholar
  47. 47.
    Rasche S et al (2010) Tmem16b is specifically expressed in the cilia of olfactory sensory neurons. Chem Senses 35(3):239–245PubMedGoogle Scholar
  48. 48.
    Kleene S, Gesteland R (1991) Calcium-activated chloride conductance in frog olfactory cilia. J Neurosci 11(11):3624–3629PubMedGoogle Scholar
  49. 49.
    Kleene SJ (1993) Origin of the chloride current in olfactory transduction. Neuron 11(1):123–132PubMedGoogle Scholar
  50. 50.
    Brunet LJ, Gold GH, Ngai J (1996) General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 17(4):681–693PubMedGoogle Scholar
  51. 51.
    Kurahashi T, Yau K-W (1993) Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells. Nature 363(6424):71–74PubMedGoogle Scholar
  52. 52.
    Lowe G, Gold GH (1993) Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature 366(6452):283–286PubMedGoogle Scholar
  53. 53.
    Reuter D et al (1998) A depolarizing chloride current contributes to chemoelectrical transduction in olfactory sensory neurons in situ. J Neurosci 18(17):6623–6630PubMedGoogle Scholar
  54. 54.
    Breer H, Boekhoff I (1991) Odorants of the same odor class activate different second messenger pathways. Chem Senses 16(1):19–29Google Scholar
  55. 55.
    Ronnett G et al (1993) Odorants differentially enhance phosphoinositide turnover and adenylyl cyclase in olfactory receptor neuronal cultures. J Neurosci 13(4):1751–1758PubMedGoogle Scholar
  56. 56.
    Ronnett GV, Moon C (2002) G proteins and olfactory signal transduction. Annu Rev Physiol 64(1):189–222PubMedGoogle Scholar
  57. 57.
    Munger SD et al (2001) Central role of the CNGA4 channel subunit in Ca2 + -calmodulin-dependent odor adaptation. Science 294(5549):2172–2175PubMedCentralPubMedGoogle Scholar
  58. 58.
    Yan C et al (1995) Molecular cloning and characterization of a calmodulin-dependent phosphodiesterase enriched in olfactory sensory neurons. Proc Natl Acad Sci 92(21):9677–9681PubMedCentralPubMedGoogle Scholar
  59. 59.
    Wayman GA, Impey S, Storm DR (1995) Ca2 + inhibition of type III adenylyl cyclase in vivo. J Biol Chem 270(37):21480–21486PubMedGoogle Scholar
  60. 60.
    Dawson T et al (1993) Beta-adrenergic receptor kinase-2 and beta-arrestin-2 as mediators of odorant-induced desensitization. Science 259(5096):825–829PubMedGoogle Scholar
  61. 61.
    Mashukova A et al (2006) β-arrestin2-mediated internalization of mammalian odorant receptors. J Neurosci 26(39):9902–9912PubMedGoogle Scholar
  62. 62.
    Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53(1):1–24PubMedGoogle Scholar
  63. 63.
    Willets JM, Challiss R, Nahorski SR (2003) Non-visual GRKs: are we seeing the whole picture? Trends Pharmacol Sci 24(12):626–633PubMedGoogle Scholar
  64. 64.
    Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67(1):653–692PubMedGoogle Scholar
  65. 65.
    Gimelbrant AA et al (1999) Truncation releases olfactory receptors from the endoplasmic reticulum of heterologous cells. J Neurochem 72(6):2301–2311PubMedGoogle Scholar
  66. 66.
    McClintock TS et al (1997) Functional expression of olfactory-adrenergic receptor chimeras and intracellular retention of heterologously expressed olfactory receptors. Mol Brain Res 48(2):270–278PubMedGoogle Scholar
  67. 67.
    Saito H et al (2004) RTP family members induce functional expression of mammalian odorant receptors. Cell 119(5):679–691PubMedGoogle Scholar
  68. 68.
    Zhuang H, Matsunami H (2008) Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nat Protocols 3(9):1402–1413Google Scholar
  69. 69.
    Chess A et al (1994) Allelic inactivation regulates olfactory receptor gene expression. Cell 78(5):823–834PubMedGoogle Scholar
  70. 70.
    Vassar R et al (1994) Topographic organization of sensory projections to the olfactory bulb. Cell 79(6):981–991PubMedGoogle Scholar
  71. 71.
    Serizawa S et al (2000) Mutually exclusive expression of odorant receptor transgenes. Nat Neurosci 3(7):687–693PubMedGoogle Scholar
  72. 72.
    Clowney EJ et al (2012) Nuclear aggregation of olfactory receptor genes governs their monogenic expression. Cell 151(4):724–737PubMedCentralPubMedGoogle Scholar
  73. 73.
    Clowney EJ et al (2011) High-throughput mapping of the promoters of the mouse olfactory receptor genes reveals a new type of mammalian promoter and provides insight into olfactory receptor gene regulation. Genome Res 21(8):1249–1259PubMedCentralPubMedGoogle Scholar
  74. 74.
    Lewcock JW, Reed RR (2004) A feedback mechanism regulates monoallelic odorant receptor expression. Proc Natl Acad Sci U S A 101(4):1069–1074PubMedCentralPubMedGoogle Scholar
  75. 75.
    Lomvardas S et al (2006) Interchromosomal interactions and olfactory receptor choice. Cell 126(2):403–413PubMedGoogle Scholar
  76. 76.
    Lyons DB et al (2013) An epigenetic trap stabilizes singular olfactory receptor expression. Cell 154(2):325–336PubMedCentralPubMedGoogle Scholar
  77. 77.
    Magklara A et al (2011) An epigenetic signature for monoallelic olfactory receptor expression. Cell 145(4):555–570PubMedCentralPubMedGoogle Scholar
  78. 78.
    Michaloski JS, Galante PA, Malnic B (2006) Identification of potential regulatory motifs in odorant receptor genes by analysis of promoter sequences. Genome Res 16(9):1091–1098PubMedCentralPubMedGoogle Scholar
  79. 79.
    Nguyen MQ et al (2007) Prominent roles for odorant receptor coding sequences in allelic exclusion. Cell 131(5):1009–1017PubMedCentralPubMedGoogle Scholar
  80. 80.
    Shykind BM et al (2004) Gene switching and the stability of odorant receptor gene choice. Cell 117(6):801–815PubMedGoogle Scholar
  81. 81.
    Vassar R, Ngai J, Axel R (1993) Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 74(2):309–318PubMedGoogle Scholar
  82. 82.
    Yoshihara Y et al (1997) OCAM: a new member of the neural cell adhesion molecule family related to zone-to-zone projection of olfactory and vomeronasal axons. J Neurosci 17(15):5830–5842PubMedGoogle Scholar
  83. 83.
    Miyamichi K et al (2005) Continuous and overlapping expression domains of odorant receptor genes in the olfactory epithelium determine the dorsal/ventral positioning of glomeruli in the olfactory bulb. J Neurosci 25(14):3586–3592PubMedGoogle Scholar
  84. 84.
    Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5(2):124–133PubMedGoogle Scholar
  85. 85.
    Zhang X et al (2004) High-throughput microarray detection of olfactory receptor gene expression in the mouse. Proc Natl Acad Sci U S A 101(39):14168–14173PubMedCentralPubMedGoogle Scholar
  86. 86.
    Kaneko-Goto T et al (2008) BIG-2 mediates olfactory axon convergence to target glomeruli. Neuron 57(6):834–846PubMedGoogle Scholar
  87. 87.
    Bozza T et al (2002) Odorant receptor expression defines functional units in the mouse olfactory system. J Neurosci 22(8):3033–3043PubMedGoogle Scholar
  88. 88.
    Imai T, Suzuki M, Sakano H (2006) Odorant receptor-derived cAMP signals direct axonal targeting. Science 314(5799):657–661PubMedGoogle Scholar
  89. 89.
    Serizawa S et al (2006) A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting. Cell 127(5):1057–1069PubMedGoogle Scholar
  90. 90.
    Feinstein P et al (2004) Axon guidance of mouse olfactory sensory neurons by odorant receptors and the β2 adrenergic receptor. Cell 117(6):833–846PubMedGoogle Scholar
  91. 91.
    Feinstein P, Mombaerts P (2004) A contextual model for axonal sorting into glomeruli in the mouse olfactory system. Cell 117(6):817–831PubMedGoogle Scholar
  92. 92.
    Yu CR et al (2004) Spontaneous neural activity is required for the establishment and maintenance of the olfactory sensory map. Neuron 42(4):553–566PubMedGoogle Scholar
  93. 93.
    Tadenev ALD et al (2011) Loss of Bardet-Biedl syndrome protein-8 (BBS8) perturbs olfactory function, protein localization, and axon targeting. Proc Natl Acad Sci 108(25):10320–10325PubMedCentralPubMedGoogle Scholar
  94. 94.
    Kosaka K et al (1998) How simple is the organization of the olfactory glomerulus?: the heterogeneity of so-called periglomerular cells. Neurosci Res 30(2):101–110PubMedGoogle Scholar
  95. 95.
    Pinching AJ, Powell TPS (1971) The neuropil of the glomeruli of the olfactory bulb. J Cell Sci 9(2):347–377PubMedGoogle Scholar
  96. 96.
    Adam Y, Mizrahi A (2010) Circuit formation and maintenance-perspectives from the mammalian olfactory bulb. Curr Opin Neurobiol 20(1):134–140PubMedGoogle Scholar
  97. 97.
    Murthy VN (2011) Olfactory maps in the brain. Annu Rev Neurosci 34(1):233–258PubMedGoogle Scholar
  98. 98.
    Hayar A et al (2004) External tufted cells: a major excitatory element that coordinates glomerular activity. J Neurosci 24(30):6676–6685PubMedGoogle Scholar
  99. 99.
    Stockhorst U, Pietrowsky R (2004) Olfactory perception, communication, and the nose-to-brain pathway. Physiol Behav 83(1):3–11PubMedGoogle Scholar
  100. 100.
    Miyamichi K et al (2011) Cortical representations of olfactory input by trans-synaptic tracing. Nature 472(7342):191–196PubMedCentralPubMedGoogle Scholar
  101. 101.
    Malnic B et al (1999) Combinatorial receptor codes for odors. Cell 96(5):713–723PubMedGoogle Scholar
  102. 102.
    Saito H et al (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2(60):ra9PubMedCentralPubMedGoogle Scholar
  103. 103.
    Sicard G, Holley A (1984) Receptor cell responses to odorants: similarities and differences among odorants. Brain Res 292(2):283–296PubMedGoogle Scholar
  104. 104.
    Keller A et al (2007) Genetic variation in a human odorant receptor alters odour perception. Nature 449(7161):468–472PubMedGoogle Scholar
  105. 105.
    Belluscio L, Katz LC (2001) Symmetry, stereotypy, and topography of odorant representations in mouse olfactory bulbs. J Neurosci 21(6):2113–2122PubMedGoogle Scholar
  106. 106.
    Laurent G, Davidowitz H (1994) Encoding of olfactory information with oscillating neural assemblies. Science 265(5180):1872–1875PubMedGoogle Scholar
  107. 107.
    Laurent G et al (2001) Odor encoding as an active, dynamical process: experiments, computation, and theory. Annu Rev Neurosci 24(1):263–297PubMedGoogle Scholar
  108. 108.
    Spors H, Grinvald A (2002) Spatio-temporal dynamics of odor representations in the mammalian olfactory bulb. Neuron 34(2):301–315PubMedGoogle Scholar
  109. 109.
    Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature 442(7103):645–650PubMedGoogle Scholar
  110. 110.
    Fleischer J, Schwarzenbacher K, Breer H (2007) Expression of trace amine-associated receptors in the Grueneberg ganglion. Chem Senses 32(6):623–631PubMedGoogle Scholar
  111. 111.
    Hashiguchi Y, Nishida M (2007) Evolution of trace amine-associated receptor (TAAR) gene family in vertebrates: lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium. Mol Biol Evol 24(9):p 2099–2107PubMedGoogle Scholar
  112. 112.
    Dewan A et al (2013) Non-redundant coding of aversive odours in the main olfactory pathway. Nature 497(7450):486–489PubMedGoogle Scholar
  113. 113.
    Ferrero DM et al (2011) Detection and avoidance of a carnivore odor by prey. Proc Natl Acad Sci 108(27):11235–11240PubMedCentralPubMedGoogle Scholar
  114. 114.
    Zhang J et al (2013) Ultrasensitive detection of amines by a trace amine-associated receptor. J Neurosci 33(7):3228–3239PubMedCentralPubMedGoogle Scholar
  115. 115.
    Meyer MR et al (2000) A cGMP-signaling pathway in a subset of olfactory sensory neurons. Proc Natl Acad Sci 97(19):10595–10600PubMedCentralPubMedGoogle Scholar
  116. 116.
    Juilfs DM et al (1997) A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc Natl Acad Sci 94(7):3388–3395PubMedCentralPubMedGoogle Scholar
  117. 117.
    Fülle H-J et al (1995) A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc Natl Acad Sci 92(8):3571–3575PubMedCentralPubMedGoogle Scholar
  118. 118.
    Hu J et al (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317(5840):953–957PubMedGoogle Scholar
  119. 119.
    Leinders-Zufall T et al (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci 104(36):14507–14512PubMedCentralPubMedGoogle Scholar
  120. 120.
    Pelosi P (1996) Perireceptor events in olfaction. J Neurobiol 30(1):3–19PubMedGoogle Scholar
  121. 121.
    Flower D (1996) The lipocalin protein family: structure and function. Biochem J 318:1–14PubMedCentralPubMedGoogle Scholar
  122. 122.
    Pelosi P (1994) Odorant-binding proteins. Crit Rev Biochem Mol Biol 29(3):199–228PubMedGoogle Scholar
  123. 123.
    Kim M-S, Repp A, Smith DP (1998) LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics 150(2):711–721PubMedCentralPubMedGoogle Scholar
  124. 124.
    Lin W et al (2004) Odors detected by mice deficient in cyclic nucleotide-gated channel subunit A2 stimulate the main olfactory system. J Neurosci 24(14):3703–3710PubMedGoogle Scholar
  125. 125.
    Jacobson L (1811) Description anatomique d’un organe observe dans les mammiferes. Ann Mus Hist Natl (Paris) 18:412–424Google Scholar
  126. 126.
    Keverne EB (1999) The vomeronasal organ. Science 286(5440):716–720PubMedGoogle Scholar
  127. 127.
    Rodriguez I, Feinstein P, Mombaerts P (1999) Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97(2):199–208PubMedGoogle Scholar
  128. 128.
    Segovia S, Guillamón A (1993) Sexual dimorphism in the vomeronasal pathway and sex differences in reproductive behaviors. Brain Res Rev 18(1):51–74PubMedGoogle Scholar
  129. 129.
    Herrada G, Dulac C (1997) A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90(4):763–773PubMedGoogle Scholar
  130. 130.
    Martini S et al (2001) Co-expression of putative pheromone receptors in the sensory neurons of the vomeronasal organ. J Neurosci 21(3):843–848PubMedGoogle Scholar
  131. 131.
    Matsunami H, Buck LB (1997) A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90(4):775–784PubMedGoogle Scholar
  132. 132.
    Ryba NJP, Tirindelli R (1997) A new multigene family of putative pheromone receptors. Neuron 19(2):371–379PubMedGoogle Scholar
  133. 133.
    Jia C, Halpern M (1996) Subclasses of vomeronasal receptor neurons: differential expression of G proteins (G iα2 and G) and segregated projections to the accessory olfactory bulb. Brain Res 719(1):117–128PubMedGoogle Scholar
  134. 134.
    Tirindelli R, Mucignat-Caretta C, Ryba NJ (1998) Molecular aspects of pheromonal communication via the vomeronasal organ of mammals. ElsevierGoogle Scholar
  135. 135.
    Hofmann T et al (2000) Cloning, expression and subcellular localization of two novel splice variants of mouse transient receptor potential channel 2. Biochem J 351:115–122PubMedCentralPubMedGoogle Scholar
  136. 136.
    Liman ER, Corey DP, Dulac C (1999) TRP2: A candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci 96(10):5791–5796PubMedCentralPubMedGoogle Scholar
  137. 137.
    Scalia F, Winans SS (1975) The differential projections of the olfactory bulb and accessory olfactory bulb in mammals. J Comp Neurol 161(1):31–55PubMedGoogle Scholar
  138. 138.
    Halpern M (1987) The organization and function of the vomeronasal system. Annu Rev Neurosci 10(1):325–362PubMedGoogle Scholar
  139. 139.
    Johns MA et al (1978) Urine-induced reflex ovulation in anovulatory rats may be a vomeronasal effect. Nature 272(5652):446–448PubMedGoogle Scholar
  140. 140.
    Bellringer J, Pratt HP, Keverne E (1980) Involvement of the vomeronasal organ and prolactin in pheromonal induction of delayed implantation in mice. J Reprod Fertil 59(1):223–228PubMedGoogle Scholar
  141. 141.
    Rajendren G, Dudley C, Moss R (1990) Role of the vomeronasal organ in the male-induced enhancement of sexual receptivity in female rats. Neuroendocrinology 52(4):368–372PubMedGoogle Scholar
  142. 142.
    Lomas D, Keverne E (1982) Role of the vomeronasal organ and prolactin in the acceleration of puberty in female mice. J Reprod Fertil 66(1):101–107PubMedGoogle Scholar
  143. 143.
    Stowers L et al (2002) Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295(5559):1493–1500PubMedGoogle Scholar
  144. 144.
    Liberles SD et al (2009) Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci 106(24):9842–9847PubMedCentralPubMedGoogle Scholar
  145. 145.
    Riviere S et al (2009) Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459(7246):574–577PubMedGoogle Scholar
  146. 146.
    Boehm N, Gasser B (1993) Sensory receptor-like cells in the human foetal vomeronasal organ. NeuroReport 4(7):867–870PubMedGoogle Scholar
  147. 147.
    Takami SL, Getchell TV (1993) Vomeronasal epithelial cells in the adult human express neuron-specific substances. NeuroReport 4:375–378PubMedGoogle Scholar
  148. 148.
    Zhu X et al (1996) Trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2 + entry. Cell 85(5):661–671PubMedGoogle Scholar
  149. 149.
    Rodriguez I et al (2000) A putative pheromone receptor gene expressed in human olfactory mucosa. Nat Genet 26(1):18–19PubMedGoogle Scholar
  150. 150.
    Vannier B et al (1999) Mouse trp2, the homologue of the human trpc2 pseudogene, encodes mTrp2, a store depletion-activated capacitative Ca2 + entry channel. Proc Natl Acad Sci 96(5):2060–2064PubMedCentralPubMedGoogle Scholar
  151. 151.
    Giorgi D et al (2000) Characterization of nonfunctional V1R-like pheromone receptor sequences in human. Genome Res 10(12):1979–1985PubMedCentralPubMedGoogle Scholar
  152. 152.
    Hara T (1994) The diversity of chemical stimulation in fish olfaction and gustation. Rev Fish Biol Fisheries 4(1):1–35Google Scholar
  153. 153.
    Yoshihara Y (2009) Molecular genetic dissection of the zebrafish olfactory system, in chemosensory systems in mammals, fishes, and insects. Springer. p 1–19Google Scholar
  154. 154.
    Cao Y, Oh BC, Stryer L (1998) Cloning and localization of two multigene receptor families in goldfish olfactory epithelium. Proc Natl Acad Sci 95(20):11987–11992PubMedCentralPubMedGoogle Scholar
  155. 155.
    Hansen A, Anderson KT, Finger TE (2004) Differential distribution of olfactory receptor neurons in goldfish: structural and molecular correlates. J Comp Neurol 477(4):347–359PubMedGoogle Scholar
  156. 156.
    Speca DJ et al (1999) Functional identification of a goldfish odorant receptor. Neuron 23(3):487–498PubMedGoogle Scholar
  157. 157.
    Pfister P, Rodriguez I (2005) Olfactory expression of a single and highly variable V1r pheromone receptor-like gene in fish species. Proc Natl Acad Sci U S A 102(15):5489–5494PubMedCentralPubMedGoogle Scholar
  158. 158.
    Ngai J et al (1993) Coding of olfactory information: topography of odorant receptor expression in the catfish olfactory epithelium. Cell 72(5):667–680PubMedGoogle Scholar
  159. 159.
    Weth F, Nadler W, Korsching S (1996) Nested expression domains for odorant receptors in zebrafish olfactory epithelium. Proc Natl Acad Sci 93(23):13321–13326PubMedCentralPubMedGoogle Scholar
  160. 160.
    Alioto T, Ngai J (2005) The odorant receptor repertoire of teleost fish. BMC Genomics 6(1):173PubMedCentralPubMedGoogle Scholar
  161. 161.
    Niimura Y, Nei M (2005) Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc Natl Acad Sci 102(17):6039–6044PubMedCentralPubMedGoogle Scholar
  162. 162.
    Michel W et al (2003) Evidence of a novel transduction pathway mediating detection of polyamines by the zebrafish olfactory system. J Exp Biol 206(10):1697–1706PubMedGoogle Scholar
  163. 163.
    Rolen SH et al (2003) Polyamines as olfactory stimuli in the goldfish Carassius auratus. J Exp Biol 206(10):1683–1696PubMedGoogle Scholar
  164. 164.
    Sato Y, Miyasaka N, Yoshihara Y (2007) Hierarchical regulation of odorant receptor gene choice and subsequent axonal projection of olfactory sensory neurons in zebrafish. J Neurosci 27(7):1606–1615PubMedGoogle Scholar
  165. 165.
    Sato Y, Miyasaka N, Yoshihara Y (2005) Mutually exclusive glomerular innervation by two distinct types of olfactory sensory neurons revealed in transgenic zebrafish. J Neurosci 25(20):4889–4897PubMedGoogle Scholar
  166. 166.
    Hansen A et al (2003) Correlation between olfactory receptor cell type and function in the channel catfish. J Neurosci 23(28):9328–9339PubMedGoogle Scholar
  167. 167.
    Morita Y, Finger TE (1998) Differential projections of ciliated and microvillous olfactory receptor cells in the catfish, Ictalurus punctatus. J Comp Neurol 398(4):539–550PubMedGoogle Scholar
  168. 168.
    Sato K, Touhara K (2009) Insect olfaction: receptors, signal transduction, and behavior, in chemosensory systems in mammals, fishes, and insects. Springer, p 203–220Google Scholar
  169. 169.
    Stocker R et al (1990) Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res 262(1):9–34PubMedGoogle Scholar
  170. 170.
    Datta SR et al (2008) The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452(7186):473–477PubMedGoogle Scholar
  171. 171.
    Clyne PJ et al (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22(2):327–338PubMedGoogle Scholar
  172. 172.
    Gao Q, Chess A (1999) Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60(1):31–39PubMedGoogle Scholar
  173. 173.
    Hill CA et al (2002) G protein-coupled receptors in anopheles gambiae. Science 298(5591):176–178PubMedGoogle Scholar
  174. 174.
    Bohbot J et al (2007) Molecular characterization of the Aedes aegypti odorant receptor gene family. Insect Mol Biol 16(5):525–537PubMedCentralPubMedGoogle Scholar
  175. 175.
    Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16(11):1395–1403PubMedCentralPubMedGoogle Scholar
  176. 176.
    Benton R et al (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4(2):e20PubMedCentralPubMedGoogle Scholar
  177. 177.
    Lundin C et al (2007) Membrane topology of the Drosophila OR83b odorant receptor. Febs Letters 581(29):5601–5604PubMedCentralPubMedGoogle Scholar
  178. 178.
    Sato K et al (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452(7190):1002–1006PubMedGoogle Scholar
  179. 179.
    Wicher D et al (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452(7190):1007–1011PubMedGoogle Scholar
  180. 180.
    Kalidas S, Smith DP (2002) Novel genomic cDNA hybrids produce effective RNA interference in adult Drosophila. Neuron 33(2):177–184PubMedGoogle Scholar
  181. 181.
    Riesgo-Escovar J, Raha D, Carlson JR (1995) Requirement for a phospholipase C in odor response: overlap between olfaction and vision in Drosophila. Proc Natl Acad Sci 92(7):2864–2868PubMedCentralPubMedGoogle Scholar
  182. 182.
    Vosshall LB et al (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96(5):725–736PubMedGoogle Scholar
  183. 183.
    Larsson MC et al (2004)  Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43(5):703–714PubMedGoogle Scholar
  184. 184.
    Dobritsa AA et al (2003) Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37(5):827–841PubMedGoogle Scholar
  185. 185.
    Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125(1):143–160PubMedGoogle Scholar
  186. 186.
    Hallem EA, Ho MG, Carlson JR (2004) The molecular basis of odor coding in the Drosophila antenna. Cell 117(7):965–979PubMedGoogle Scholar
  187. 187.
    Benton R et al (2009) Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136(1):149–162PubMedCentralPubMedGoogle Scholar
  188. 188.
    White JG et al (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314(1165):1–340PubMedGoogle Scholar
  189. 189.
    Chen N et al (2005) Identification of a nematode chemosensory gene family. Proc Natl Acad Sci U S A 102(1):146–151PubMedCentralPubMedGoogle Scholar
  190. 190.
    Bargmann CI (2006) Comparative chemosensation from receptors to ecology. Nature 444(7117):295–301PubMedGoogle Scholar
  191. 191.
    Troemel ER et al (1995) Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 83(2):207–218PubMedGoogle Scholar
  192. 192.
    Sengupta P, Chou JH, Bargmann CI (1996) odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84(6):899–909PubMedGoogle Scholar
  193. 193.
    Robertson HM (2001) Updating the str and srj (stl) families of chemoreceptors in Caenorhabditis nematodes reveals frequent gene movement within and between chromosomes. Chem Senses 26(2):151–159PubMedGoogle Scholar
  194. 194.
    McCarroll SA, Li H, Bargmann CI (2005) Identification of transcriptional regulatory elements in chemosensory receptor genes by probabilistic segmentation. Curr Biol 15(4):347–352PubMedGoogle Scholar
  195. 195.
    Dalton RP, Lyons DB, Lomvardas S (2013) Co-opting the unfolded protein response to elicit olfactory receptor feedback. Cell 155(2):321–332Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamUSA
  2. 2.Department of NeurobiologyDuke University Medical CenterDurhamUSA
  3. 3.Duke Institute for Brain SciencesDuke University Medical CenterDurhamUSA

Personalised recommendations