Optical Methods in Studies of Olfactory System

Chapter

Abstract

The olfactory receptor (OR) comprises the largest multi-gene G protein-coupled receptor (GPCR) family by playing a critical role in recognizing thousands of odorant molecules. Odorant-OR pairs have been characterized using various functional assays, and have provided an understanding of molecular basis in olfaction as well as characterizing specificity between agonist and antagonist. This chapter introduces the most commonly employed, labeled or label-free optical techniques employed to identify the odorant-OR pairs on a cellular and molecular level, and reviews recent developments in odorant binding assays to ORs with optical methods such as Ca2+ imaging, reporter-gene technology, surface plasmon resonance (SPR) and so on. For OR and GPCR study, a set of optical technologies including—but not limited to—Raman spectroscopy, photonic crystal, and total internal reflection (TIR) are also discussed in an analytical science point of view.

References

  1. 1.
    Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187PubMedGoogle Scholar
  2. 2.
    Keller A, Zhuang H, Chi Q et al (2007) Genetic variation in a human odorant receptor alters odour perception. Nature 449:468–472PubMedGoogle Scholar
  3. 3.
    Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–218PubMedGoogle Scholar
  4. 4.
    Krieger J, Breer H (1999) Olfactory reception in invertebrates. Science 286:720–723PubMedGoogle Scholar
  5. 5.
    Bomback AS, Raff AC (2011) Olfactory function in dialysis patients: a potential key to understanding the uremic state. Kidney Int 80:803–805PubMedGoogle Scholar
  6. 6.
    Malnic B, Hirono J, Sato T et al (1999) Combinatorial receptor codes for odors. Cell 96:713–723PubMedGoogle Scholar
  7. 7.
    Touhara K, Sengoku S, Inaki K et al (1999) Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc Natl Acad Sci USA 96:4040–4045PubMedCentralPubMedGoogle Scholar
  8. 8.
    Zou D-J, Chesler A, Firestein S (2009) How the olfactory bulb got its glomeruli: a just so story? Nat Rev Neurosci 10:611–618PubMedGoogle Scholar
  9. 9.
    Touhara K (2002) Odor discrimination by G protein-coupled olfactory receptors. Microsc Res Tech 58:135–141PubMedGoogle Scholar
  10. 10.
    Katada S, Hirokawa T, Oka Y et al (2005) Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 25:1806–1815PubMedGoogle Scholar
  11. 11.
    Oka Y, Omura M, Kataoka H et al (2004) Olfactory receptor antagonism between odorants. EMBO J 23:120–126PubMedCentralPubMedGoogle Scholar
  12. 12.
    Lee SH, Ko HJ, Park TH (2009) Real-time monitoring of odorant-induced cellular reactions using surface plasmon resonance. Biosens Bioelectron 25:55–60PubMedGoogle Scholar
  13. 13.
    Lee JY, Ko HJ, Lee SH et al (2006) Cell-based measurement of odorant molecules using surface plasmon resonance. Enzyme Microb Technol 39:375–380Google Scholar
  14. 14.
    Vidic J, Grosclaude J, Monnerie R et al (2008) On a chip demonstration of a functional role for odorant binding protein in the preservation of olfactory receptor activity at high odorant concentration. Lab Chip 8:678–688PubMedGoogle Scholar
  15. 15.
    Vidic JM, Grosclaude J, Persuy M-A et al (2006) Quantitative assessment of olfactory receptors activity in immobilized nanosomes: a novel concept for bioelectronic nose. Lab Chip 6:1026–1032PubMedGoogle Scholar
  16. 16.
    Ko HJ, Park TH (2005) Piezoelectric olfactory biosensor: ligand specificity and dose-dependence of an olfactory receptor expressed in a heterologous cell system. Biosens Bioelectron 20:1327–1332PubMedGoogle Scholar
  17. 17.
    Sung JH, Ko HJ, Park TH (2006) Piezoelectric biosensor using olfactory receptor protein expressed in Escherichia coli. Biosens Bioelectron 21:1981–1986PubMedGoogle Scholar
  18. 18.
    Sankarana S, Panigrahia S, Mallikb S (2011) Olfactory receptor based piezoelectric biosensors for detection of alcohols related to food safety applications. Sens Actuators B Chem 155:8–18Google Scholar
  19. 19.
    Sankaran S, Panigrahi S, Mallik S (2011) Odorant binding protein based biomimetic sensors for detection of alcohols associated with Salmonella contamination in packaged beef. Biosens Bioelectron 26:3103–3109PubMedGoogle Scholar
  20. 20.
    Lee SH, Kwon OS, Song HS et al (2012) Mimicking the human smell sensing mechanism with an artificial nose platform. Biomaterials 33:1722–1729PubMedGoogle Scholar
  21. 21.
    Lee SH, Jin HJ, Song HS et al (2012) Bioelectronic nose with high sensitivity and selectivity using chemically functionalized carbon nanotube combined with human olfactory receptor. J Biotechnol 157:467–472PubMedGoogle Scholar
  22. 22.
    Park SJ, Kwon OS, Lee SH et al (2012) Ultrasensitive flexible graphene based (FET)-type bioelectronic nose. Nano Lett 12:5082–5090PubMedGoogle Scholar
  23. 23.
    Lim JH, Park J, Oh EH et al (2013) Nanovesicle-based bioelectronic nose for the diagnosis of lung cancer from human blood. Adv Healthc Mater. doi:10.1002/adhm.201300174Google Scholar
  24. 24.
    Kim TH, Lee SH, Lee J et al (2009) Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose. Adv Mater 21:91–94Google Scholar
  25. 25.
    Goldsmith BR, Mitala JJ, Josue J et al (2011) Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins. ACS Nano 5:5408–5416PubMedGoogle Scholar
  26. 26.
    Liu Q, Ye W, Hu N et al (2010) Olfactory receptor cells respond to odors in a tissue and semiconductor hybrid neuron chip. Biosens Bioelectron 26:1672–1678PubMedGoogle Scholar
  27. 27.
    Liu Q, Cai H, Xu Y et al (2006) Olfactory cell-based biosensor: a first step towards a neurochip of bioelectronic nose. Biosens Bioelectron 22:318–322PubMedGoogle Scholar
  28. 28.
    Wu C, Chen P, Yu H et al (2009) A novel biomimetic olfactory-based biosensor for single olfactory sensory neuron monitoring. Biosens Bioelectron 24:1498–1502PubMedGoogle Scholar
  29. 29.
    Liu Q, Ye W, Yu H et al (2010) Olfactory mucosa tissue-based biosensor: a bioelectronic nose with receptor cells in intact olfactory epithelium. Sens Actuators B Chem 146:527–533Google Scholar
  30. 30.
    Lee SH, Jun SB, Ko HJ et al (2009) Cell-based olfactory biosensor using microfabricated planar electrode. Biosens Bioelectron 24:2659–2664PubMedGoogle Scholar
  31. 31.
    Lee SH, Jeong SH, Jun SB et al (2009) Enhancement of cellular olfactory signal by electrical stimulation. Electrophoresis 30:3283–3288PubMedGoogle Scholar
  32. 32.
    Liu Q, Ye W, Xiao L et al (2010) Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose. Biosens Bioelectron 25:2212–2217PubMedGoogle Scholar
  33. 33.
    Lee SH, Park TH (2010) Recent advances in the development of bioelectronic nose. Biotechnol Bioprocess Eng 15:22–29Google Scholar
  34. 34.
    Kaupp UB (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11:188–200PubMedGoogle Scholar
  35. 35.
    Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5:124–133PubMedGoogle Scholar
  36. 36.
    Godfrey PA, Malnic B, Buck LB (2003) The mouse olfactory receptor gene family. Proc Natl Acad Sci U S A 101:2156–2161Google Scholar
  37. 37.
    Zozulya S, Echeverri F, Nguyen T (2001) The human olfactory receptor repertoire. Genome Biol 2:research0018.1–0018.12Google Scholar
  38. 38.
    Glusman G, Yanai I, Rubin I et al (2001) The complete human olfactory subgenome. Genome Res 11:685–702PubMedGoogle Scholar
  39. 39.
    Fuchs T, Glusman G, Horn-Saban S et al (2001) The human olfactory subgenome: from sequence to structure and evolution. Hum Genet 108:1–13PubMedGoogle Scholar
  40. 40.
    Malnic B, Godfrey PA, Buck LB (2004) The human olfactory receptor gene family. Proc Natl Acad Sci U S A 101:2584–2589PubMedCentralPubMedGoogle Scholar
  41. 41.
    Glusman G, Bahar A, Sharon D et al (2000) The olfactory receptor gene superfamily: data mining, classification, and nomenclature. Mamm Genome 11:1016–1023PubMedGoogle Scholar
  42. 42.
    Wang J, Luthey-Schulten ZA, Suslick KS (2003) Is the olfactory receptor a metalloprotein? Proc Natl Acad Sci U S A 100:3035–3039PubMedCentralPubMedGoogle Scholar
  43. 43.
    Shirokova E, Schmiedeberg K, Bedner P et al (2005) Identification of specific ligands for orphan olfactory receptors. J Biol Chem 280:11807–11815PubMedGoogle Scholar
  44. 44.
    Touhara K (2007) Deorphanizing vertebrate olfactory receptors: recent advances in odorant-response assays. Neurochem Int 51:132–139PubMedGoogle Scholar
  45. 45.
    Kajiya K, Inaki K, Tanaka M et al (2001) Molecular bases of odor discrimination: reconstitution of olfactory receptors that recognize overlapping sets of odorants. J Neurosci 21:6018–6025PubMedGoogle Scholar
  46. 46.
    Peterlin Z, Li Y, Sun G et al (2008) The importance of odorant conformation to the binding and activation of a representative olfactory receptor. Chem Biol 15:1317–1327PubMedCentralPubMedGoogle Scholar
  47. 47.
    Ko HJ, Park TH (2006) Dual signal transduction mediated by a single type of olfactory receptor expressed in a heterologous system. Biol Chem 387:59–68PubMedGoogle Scholar
  48. 48.
    Jacquier V, Pick H, Vogel H (2006) Characterization of an extended receptive ligand repertoire of the human olfactory receptor OR17-40 comprising structurally related compounds. J Neurochem 97:537–544PubMedGoogle Scholar
  49. 49.
    Spehr M, Gisselmann G, Poplawski A et al (2003) Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299:2054–2058PubMedGoogle Scholar
  50. 50.
    Omura M, Sekine H, Shimizu T et al (2003) In situ Ca2+ imaging of odor responses in a coronal olfactory epithelium slice. Neuroreport 14:1123–1127PubMedGoogle Scholar
  51. 51.
    Wetzel CH, Oles M, Wellerdieck C et al (1999) Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus laevis oocytes. J Neurosci 19:7426–7433PubMedGoogle Scholar
  52. 52.
    Katada S, Nakagawa T, Kataoka H et al (2003) Odorant response assays for a heterologously expressed olfactory receptor. Biochem Biophys Res Commun 305:964–969PubMedGoogle Scholar
  53. 53.
    Hamana H, Shou-xin L, Breuils L et al (2010) Heterologous functional expression system for odorant receptors. J Neurosci Methods 185:213–220PubMedGoogle Scholar
  54. 54.
    Zhao H, Ivic L, Otaki JM et al (1998) Functional expression of a mammalian odorant receptor. Science 279:237–242PubMedGoogle Scholar
  55. 55.
    Saito H, Kubota M, Roberts RW et al (2004) RTP family members induce funcitonal expression of mammalian odorant receptors. Cell 119:679–691PubMedGoogle Scholar
  56. 56.
    Zhuang H, Matsunami H (2007) Synergism of accessory factors in functional expression of mammalian odorant receptors. J Biol Chem 282:15284–15293PubMedGoogle Scholar
  57. 57.
    Behrens M, Bartelt J, Reichling C et al (2006) Members of RTP and REEP gene families influence functional bitter taste receptor expression. J Biol Chem 281:20650–20659PubMedGoogle Scholar
  58. 58.
    Saito H, Chi Q, Zhuang H et al (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2:1–14Google Scholar
  59. 59.
    Oka Y, Nakamura A, Watanabe H et al (2004) An odorant derivative as an antagonist for an olfactory receptor. Chem Senses 29:815–822PubMedGoogle Scholar
  60. 60.
    Araneda RC, Kini AD, Firestein S (2000) The molecular receptive range of an odorant receptor. Nat Neurosci 3:1248–1255PubMedGoogle Scholar
  61. 61.
    Mori K, Sakano H (2011) How is the olfactory map formed and interpreted in the mammalian brain? Annu Rev Neurosci 34:467–499PubMedGoogle Scholar
  62. 62.
    Wilson T, Hastings JW (1998) Bioluminescence. Annu Rev Cell Dev Biol 14:197–230PubMedGoogle Scholar
  63. 63.
    Hill SJ, Baker JG, Rees S (2001) Reporter-gene systems for the study of G-protein-coupled receptors. Curr Opin Pharmacol 1:526–532PubMedGoogle Scholar
  64. 64.
    Roda A, Pasini P, Mirasoli M et al (2004) Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol 22:295–303PubMedGoogle Scholar
  65. 65.
    Altarejos JY, Montminy M (2011) CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12:141–151PubMedGoogle Scholar
  66. 66.
    Radhika V, Proikas-Cezanne T, Jayaraman M et al (2007) Chemical sensing of DNT by engineered olfactory yeast strain. Nat Chem Biol 3:325–330PubMedGoogle Scholar
  67. 67.
    Shan Q, Storm DR (2010) Optimization of a cAMP response element signal pathway reporter system. J Neurosci Methods 191:21–25PubMedCentralPubMedGoogle Scholar
  68. 68.
    Minic J, Persuy MA, Godel E et al (2005) Functional expression of olfactory receptors in yeast and development of a bioassay for odorant screening. FEBS J 272:524–537PubMedGoogle Scholar
  69. 69.
    Fukutani Y, Noguchi K, Kondo A et al (2012) An improved bioluminescence-based signaling assay for odor sensing with a yeast expressing a chimeric olfactory receptor. Biotechnol Bioeng 109:3143–3151PubMedGoogle Scholar
  70. 70.
    Bacart J, Corbel C, Jockers R et al (2008) The BRET technology and its application to screening assays. Biotechnol J 3:311–324PubMedGoogle Scholar
  71. 71.
    Wade F, Espagne A, Persuy MA et al (2011) Relationship between homo-oligomerization of a mammalian olfactory receptor and its activation state demonstrated by bioluminescence resonance energy transfer. J Biol Chem 286:15252–15259PubMedCentralPubMedGoogle Scholar
  72. 72.
    Miyawaki A, Llopis J, Heim R et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887PubMedGoogle Scholar
  73. 73.
    German PF, van der Poel S, Carraher C et al (2013) Insights into subunit interactions within the insect olfactory receptor complex using FRET. Insect Biochem Mol Biol 43:138–145PubMedGoogle Scholar
  74. 74.
    Fiala A, Spall T, Diegelmann S et al (2002) Genetically expressed cameleon in drosophila melanogaster is used to visualize olfactory information in projection neurons. Curr Biol 12:1877–1884PubMedGoogle Scholar
  75. 75.
    Ko HJ, Park TH (2007) Functional analysis of olfactory receptors expressed in a HEK-293 cell system by using cameleons. J Microbiol Biotechnol 17:928–933PubMedGoogle Scholar
  76. 76.
    Bouvier M, Heveker N, Jockers R et al (2007) BRET analysis of GPCR oligomerization: newer does not mean better. Nat Methods 4:3–4PubMedCentralPubMedGoogle Scholar
  77. 77.
    Charest PG, Terrillon S, Bouvier M (2005) Monitoring agonist-promoted conformational changes of b-arrestin in living cells by intramolecular BRET. EMBO Rep 6:334–340PubMedCentralPubMedGoogle Scholar
  78. 78.
    Jensen AA, Hansen JL, Sheikh SP et al (2002) Probing intermolecular protein–protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET). Eur J Biochem 269:5076–5087PubMedGoogle Scholar
  79. 79.
    Ayoub MA, Couturier C, Lucas-Meunier E et al (2002) Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells. J Biol Chem 277:21522–21528PubMedGoogle Scholar
  80. 80.
    Jiang Li, Collins, Davis R et al (2007) Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway. J Biol Chem 282:10576–10584PubMedCentralPubMedGoogle Scholar
  81. 81.
    Mashanov GI, Tacon D, Peckham M et al (2004) The spatial and temporal dynamics of pleckstrin homology domain binding at the plasma membrane measured by imaging single molecules in live mouse myoblasts. J Biol Chem 279:15274–15280PubMedGoogle Scholar
  82. 82.
    Mattheyses AL, Simon SM, Rappoport JZ (2010) Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 123:3621–3628PubMedCentralPubMedGoogle Scholar
  83. 83.
    Moran-Mirabal JM, Edel JB, Meyer GD et al (2005) Micrometer-sized supported lipid bilayer arrays for bacterial toxin binding studies through total internal reflection fluorescence microscopy. Biophys J 89:296–305PubMedCentralPubMedGoogle Scholar
  84. 84.
    Kasai RS, Suzuki KG, Prossnitz ER et al (2011) Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol 192:463–480PubMedCentralPubMedGoogle Scholar
  85. 85.
    Boyer SB, Slesinger PA (2010) Probing novel GPCR interactions using a combination of FRET and TIRF. Commun Integr Biol 3:343–346PubMedCentralPubMedGoogle Scholar
  86. 86.
    Keppler A, Gendreizig S, Gronemeyer T et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89PubMedGoogle Scholar
  87. 87.
    Calebiro D, Rieken F, Wagner J et al (2013) Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci U S A 110:743–748PubMedCentralPubMedGoogle Scholar
  88. 88.
    Park SM, Huh YS, Szeto K et al (2010) Rapid prototyping of nanofluidic systems using size-reduced electrospun nanofibers for biomolecular analysis. Small 6:2420–2426PubMedGoogle Scholar
  89. 89.
    Garcia-Saez AJ, Ries J, Orzaez M et al (2009) Membrane promotes tBID interaction with BCL(XL). Nat Struct Mol Biol 16:1178–1185PubMedGoogle Scholar
  90. 90.
    Jakobs D, Sorkalla T, Haberlein H (2012) Ligands for fluorescence correlation spectroscopy on g protein-coupled receptors. Curr Med Chem 19:4722–4730PubMedGoogle Scholar
  91. 91.
    Briddon SJ, Hill SJ (2007) Pharmacology under the microscope: the use of fluorescence correlation spectroscopy to determine the properties of ligand-receptor complexes. Trends Pharmacol Sci 28:637–645PubMedCentralPubMedGoogle Scholar
  92. 92.
    Poyner D, Wheatley M (2010) G-protein coupled receptors: methods express, ed. Series. 2010. Chichester: Wiley, xiv, 296 pGoogle Scholar
  93. 93.
    Herrick-Davis K, Grinde E, Lindsley T et al (2012) Oligomer size of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor revealed by fluorescence correlation spectroscopy with photon counting histogram analysis: evidence for homodimers without monomers or tetramers. J Biol Chem 287:23604–23614PubMedCentralPubMedGoogle Scholar
  94. 94.
    Gao T, Petrlova J, He W et al (2012) Characterization of de novo synthesized GPCRs supported in nanolipoprotein discs. PLoS One 7:e44911PubMedCentralPubMedGoogle Scholar
  95. 95.
    Vukojevic V, Pramanik A, Yakovleva T et al (2005) Study of molecular events in cells by fluorescence correlation spectroscopy. Cell Mol Life Sci 62:535–550PubMedGoogle Scholar
  96. 96.
    Schwille P (2001) Fluorescence correlation spectroscopy and its potential for intracellular applications. Cell Biochem Biophys 34:383–408PubMedGoogle Scholar
  97. 97.
    Myers FB, Lee LP (2008) Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 8:2015–2031PubMedGoogle Scholar
  98. 98.
    Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev Drug Discov 1:515–528PubMedGoogle Scholar
  99. 99.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830PubMedGoogle Scholar
  100. 100.
    Huber W, Mueller F (2006) Biomolecular interaction analysis in drug discovery using surface plasmon resonance technology. Curr Pharm Des 12:3999–4021PubMedGoogle Scholar
  101. 101.
    Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539PubMedGoogle Scholar
  102. 102.
    Fang Y, Ferrie AM, Fontaine NH et al (2006) Resonant waveguide grating biosensor for living cell sensing. Biophys J 91:1925–1940PubMedCentralPubMedGoogle Scholar
  103. 103.
    Vidic J, Pla-Roca M, Grosclaude J et al (2007) Gold surface functionalization and patterning for specific immobilization of olfactory receptors carried by nanosomes. Anal Chem 79:3280–3290PubMedGoogle Scholar
  104. 104.
    Benilova I, Chegel VI, Ushenin YV et al (2008) Stimulation of human olfactory receptor 17-40 with odorants probed by surface plasmon resonance. Eur Biophys J 37:807–814PubMedGoogle Scholar
  105. 105.
    Matarazzo V, Zsürger N, Guillemot JC et al (2002) Porcine odorant-binding protein selectively binds to a human olfactory receptor. Chem Senses 27:691–701PubMedGoogle Scholar
  106. 106.
    Coburn CM, Bargmann CI (1996) A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron 17:695–706PubMedGoogle Scholar
  107. 107.
    Komatsu H, Mori I, Rhee JS et al (1996) Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron 17:707–718PubMedGoogle Scholar
  108. 108.
    Angel RJ, Jackson JM, Reichmann HJ et al (2009) Elasticity measurements on minerals: a review. Eur J Mineral 21:525–550Google Scholar
  109. 109.
    Lin SW, Sakmar TP, Franke RR et al (1992) Resonance Raman microprobe spectroscopy of rhodopsin mutants: effect of substitutions in the third transmembrane helix. Biochemistry 31:5105–5111PubMedGoogle Scholar
  110. 110.
    Yan EC, Kazmi MA, Ganim Z et al (2003) Retinal counterion switch in the photoactivation of the G protein-coupled receptor rhodopsin. Proc Natl Acad Sci U S A 100:9262–9267PubMedCentralPubMedGoogle Scholar
  111. 111.
    Kukura P, McCamant DW, Yoon S et al (2005) Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science 310:1006–1009PubMedGoogle Scholar
  112. 112.
    Park SM, Huh YS, Craighead HG et al (2009) A method for nanofluidic device prototyping using elastomeric collapse. Proc Natl Acad Sci U S A 106:15549–15554PubMedCentralPubMedGoogle Scholar
  113. 113.
    Kennedy DC, Tay L-L, Lyn RK et al (2009) Nanoscale aggregation of cellular β2-adrenergic receptors measured by plasmonic interactions of functionalized nanoparticles. ACS Nano 3:2329–2339PubMedGoogle Scholar
  114. 114.
    Kennedy DC, McKay CS, Tay LL et al (2011) Carbon-bonded silver nanoparticles: alkyne-functionalized ligands for SERS imaging of mammalian cells. Chem Commun (Camb) 47:3156–3158Google Scholar
  115. 115.
    Podstawka-Proniewicz E, Kudelski A, Kim Y et al (2011) Structure of monolayers formed from neurotensin and its single-site mutants: vibrational spectroscopic studies. J Phys Chem B 115:6709–6721PubMedGoogle Scholar
  116. 116.
    Podstawka E (2008) Investigation of molecular structure of bombesin and its modified analogues nonadsorbed and adsorbed on electrochemically roughened silver surface. Biopolymers 89:506–521PubMedGoogle Scholar
  117. 117.
    Podstawka-Proniewicz E, Kudelski A, Kim Y et al (2011) Structure and binding of specifically mutated neurotensin fragments on a silver substrate: vibrational studies. J Phys Chem B 115:7097–7108PubMedGoogle Scholar
  118. 118.
    Podstawka E, Niaura G (2009) Potential-dependent characterization of bombesin adsorbed states on roughened Ag, Au, and Cu electrode surfaces at physiological pH. J Phys Chem B 113:10974–10983PubMedGoogle Scholar
  119. 119.
    Kneipp J, Kneipp H, Wittig B et al (2010) Novel optical nanosensors for probing and imaging live cells. Nanomedicine 6:214–226PubMedGoogle Scholar
  120. 120.
    Cloutier T, Park J, Butler P (2011) Combining labeled and label-free tools. Genet Eng Biotechnol News 31:32–33Google Scholar
  121. 121.
    Cunningham BT (2010) Photonic crystal surfaces as a general purpose platform for label-free and fluorescent assays. JALA Charlottesv Va 15:120–135PubMedCentralPubMedGoogle Scholar
  122. 122.
    Cunningham BT, Laing L (2006) Microplate-based, label-free detection of biomolecular interactions: applications in proteomics. Expert Rev Proteomics 3:271–281PubMedGoogle Scholar
  123. 123.
    Lin B, Qiu J, Gerstenmeier J et al (2002) A label-free optical technique for detecting small molecule interactions. Biosens Bioelectron 17:827–834PubMedGoogle Scholar
  124. 124.
    Antony J, Kellershohn K, Mohr-Andra M et al (2009) Dualsteric GPCR targeting: a novel route to binding and signaling pathway selectivity. FASEB J 23:442–450PubMedGoogle Scholar
  125. 125.
    Dodgson K, Gedge L, Murray DC et al (2009) A 100K well screen for a muscarinic receptor using the Epic label-free system-a reflection on the benefits of the label-free approach to screening seven-transmembrane receptors. J Recept Signal Transduct Res 29:163–172PubMedGoogle Scholar
  126. 126.
    Martins SA, Trabuco JR, Monteiro GA et al (2012) Towards the miniaturization of GPCR-based live-cell screening assays. Trends Biotechnol 30:566–574PubMedGoogle Scholar
  127. 127.
    Zhang R, Xie X (2012) Tools for GPCR drug discovery. Acta Pharmacol Sin 33:372–384PubMedCentralPubMedGoogle Scholar
  128. 128.
    Halai R, Croker DE, Suen JY et al (2012) A comparative study of impedance versus optical label-free systems relative to labelled assays in a predominantly Gi coupled GPCR (C5aR) signalling. Biosensors 2:273–290Google Scholar
  129. 129.
    Fang Y, Ferrie AM, Tran E (2009) Resonant waveguide grating biosensor for whole-cell GPCR assays. Methods Mol Biol 552:239–252PubMedGoogle Scholar
  130. 130.
    Fang Y, Frutos AG, Verklereen R (2008) Label-free cell-based assays for GPCR screening. Comb Chem High Throughput Screen 11:357–369PubMedGoogle Scholar
  131. 131.
    Park SM, Lee KH, Craighead HG (2008) On-chip coupling of electrochemical pumps and an SU-8 tip for electrospray ionization mass spectrometry. Biomed Microdevices 10:891–897PubMedGoogle Scholar
  132. 132.
    Park SM, Ahn JY, Jo M et al (2009) Selection and elution of aptamers using nanoporous sol-gel arrays with integrated microheaters. Lab Chip 9:1206–1212PubMedGoogle Scholar
  133. 133.
    Aubin KL, Huang J, Park SM et al (2007) Microfluidic encapsulated nanoelectromechanical resonators. J Vac Sci Technol B 25:1171–1174Google Scholar
  134. 134.
    Erukhimovitch V, Huleihel M (2013) Use of fourier-transform infrared (FTIR) microscopy method for detection of phyto-fungal pathogens. In: GV (ed) Laboratory protocols in fungal biology. Ed. Vijai Kumar Gupta, Maria G. Tuohy, Springer, New York, pp 161–167Google Scholar
  135. 135.
    Ye S, Huber T, Vogel R et al (2009) FTIR analysis of GPCR activation using azido probes. Nat Chem Biol 5:397–399PubMedCentralPubMedGoogle Scholar
  136. 136.
    Elgeti M, Rose AS, Bartl FJ et al (2013) Precision vs. flexibility in GPCR signaling. J Am Chem Soc 135(33):12305–12312PubMedGoogle Scholar
  137. 137.
    Jager S, Lewis JW, Zvyaga TA et al (1997) Chromophore structural changes in rhodopsin from nanoseconds to microseconds following pigment photolysis. Proc Natl Acad Sci U S A 94:8557–8562PubMedCentralPubMedGoogle Scholar
  138. 138.
    Choe HW, Park JH, Kim YJ et al (2011) Transmembrane signaling by GPCRs: insight from rhodopsin and opsin structures. Neuropharmacology 60:52–57PubMedGoogle Scholar
  139. 139.
    Vogel R, Siebert F (2001) Conformations of the active and inactive states of opsin. J Biol Chem 276:38487–38493PubMedGoogle Scholar
  140. 140.
    Cohen GB, Oprian DD, Robinson PR (1992) Mechanism of activation and inactivation of opsin: role of Glu113 and Lys296. Biochemistry 31:12592–12601PubMedGoogle Scholar
  141. 141.
    Scheerer P, Park JH, Hildebrand PW et al (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Departments of Bioengineering, Berkeley Sensor & Actuator CenterUniversity of CaliforniaBerkeleyUSA
  2. 2.Departments of Bioengineering, Electrical Engineering and Computer Science, Biophysics Program, Berkeley Sensor & Actuator CenterUniversity of CaliforniaBerkeleyUSA

Personalised recommendations