Concept of Bioelectronic Nose

  • Jong Hyun Lim
  • Tai Hyun ParkEmail author


Sense of smell is an important sense to recognize environmental conditions and dangerous situations. Following the identification of the olfactory mechanism in the early 1990s, extensive studies to develop electronic devices that mimic the function of animal noses have been conducted. Most devices have been composed of an array of several sensors that react to chemical compounds. The odor is characterized by analyzing the response patterns generated by the sensor array. However, such devices have limitations in terms of sensitivity and selectivity. Hence, a novel concept for sensor devices functionalized with odor-recognizing biomolecules was suggested. Sensors which use biomolecules as a primary sensing material are commonly called bioelectronic noses. A bioelectronic nose generally consists of primary and secondary transducers. The primary transducer is a biological recognition element such as olfactory receptors and odorant-binding proteins. The secondary transducer is a highly sensitive optical or electrical sensor platform that converts biological events into measurable signals. In this chapter, the basic concept and principles of bioelectronic noses are described. In addition, specific characteristics of bioelectronic noses and the current issues are presented.


Olfactory Receptor Taste Receptor Electronic Nose Odorant Binding Protein Bitter Taste Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning (No. 2013003890).


  1. 1.
    Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5(2):124–133PubMedGoogle Scholar
  2. 2.
    Godfrey PA, Malnic B, Buck LB (2004) The mouse olfactory receptor gene family. Proc Natl Acad Sci U S A 101(7):2156–2161Google Scholar
  3. 3.
    Quignon P, Giraud M, Rimbault M, Lavigne P, Tacher S, Morin E, Retout E, Valin A-S, Lindblad-Toh K, Nicolas J, Galibert F (2005) The dog and rat olfactory receptor repertoires. Genome Biol 6(10):R83Google Scholar
  4. 4.
    Ashton EH, Eayrs JT, Moulton DG (1957) Olfactory acuity in the dog. Nature 179(4569):1069–1070PubMedCrossRefGoogle Scholar
  5. 5.
    Moulton DG, Ashton EH, Eayrs JT (1960) Studies in olfactory acuity. 4. Relative detectability of n-aliphatic acids by the dog. Anim Behav 8(3–4):117–128CrossRefGoogle Scholar
  6. 6.
    Furton KG, Myers LJ (2001) The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta 54(3):487–500PubMedCrossRefGoogle Scholar
  7. 7.
    Gazit I, Lavner Y, Bloch G, Azulai O, Goldblatt A, Terkel J (2003) A simple system for the remote detection and analysis of sniffing in explosives detection dogs. Behav Res Methods Instrum Comput 35(1):82–89PubMedCrossRefGoogle Scholar
  8. 8.
    Cornu J-N, Cancel-Tassin G, Ondet V, Girardet C, Cussenot O (2011) Olfactory detection of prostate cancer by dogs sniffing urine: a step forward in early diagnosis. Eur Urol 59(2):197–201PubMedGoogle Scholar
  9. 9.
    Ehmann R, Boedeker E, Friedrich U, Sagert J, Dippon J, Friedel G, Walles T (2012) Canine scent detection in the diagnosis of lung cancer: revisiting a puzzling phenomenon. Eur Respir J 39(3):669–676PubMedCrossRefGoogle Scholar
  10. 10.
    McCulloch M, Jezierski T, Broffman M, Hubbard A, Turner K, Janecki T (2006) Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers. Integr Cancer Ther 5(1):30–39PubMedCrossRefGoogle Scholar
  11. 11.
    Bodyak N, Slotnick B (1999) Performance of mice in an automated olfactometer: odor detection, discrimination and odor memory. Chem Senses 24(6):637–645PubMedCrossRefGoogle Scholar
  12. 12.
    Clarke S, Trowill JA (1971) Sniffing and motivated behavior in the rat. Physiol Behav 6(1):49–52PubMedCrossRefGoogle Scholar
  13. 13.
    Uchida N, Mainen ZF (2003) Speed and accuracy of olfactory discrimination in the rat. Nat Neurosci 6(11):1224–1229PubMedCrossRefGoogle Scholar
  14. 14.
    Youngentob SL, Mozell MM, Sheehe PR, Hornung DE (1987) A quantitative analysis of sniffing strategies in rats performing odor detection tasks. Physiol Behav 41(1):59–69PubMedCrossRefGoogle Scholar
  15. 15.
    Hu J, Zhong C, Ding C, Chi Q, Walz A, Mombaerts P, Matsunami H, Luo M (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317(5840):953–957PubMedCrossRefGoogle Scholar
  16. 16.
    Dalton P (2000) Psychophysical and behavioral characteristics of olfactory adaptation. Chem Senses 25(4):487–492PubMedCrossRefGoogle Scholar
  17. 17.
    O’Mahony M (1986) Sensory adaptation. J Sens Stud 1(3–4):237–258CrossRefGoogle Scholar
  18. 18.
    Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299(5881):352–355PubMedCrossRefGoogle Scholar
  19. 19.
    Freund MS, Lewis NS (1995) A chemically diverse conducting polymer-based “electronic nose”. Proc Natl Acad Sci U S A 92(7):2652–2656PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Gardner JW, Shurmer HV, Tan TT (1992) Application of an electronic nose to the discrimination of coffees. Sensor Actuat B-Chem 6(1–3):71–75CrossRefGoogle Scholar
  21. 21.
    Pearce TC, Gardner JW, Friel S, Bartlett PN, Blair N (1993) Electronic nose for monitoring the flavour of beers. Analyst 118(4):371–377CrossRefGoogle Scholar
  22. 22.
    Gardner JW, Hines EL, Wilkinson M (1990) Application of artificial neural networks to an electronic olfactory system. Meas Sci Technol 1(5):446CrossRefGoogle Scholar
  23. 23.
    Shurmer H, Fard A, Barker J, Bartlett P, Dodd G, Hayat U (1987) Development of an electronic nose. Phys Technol 18(4):170CrossRefGoogle Scholar
  24. 24.
    Buck LB, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1):175–187PubMedCrossRefGoogle Scholar
  25. 25.
    Ressler KJ, Sullivan SL, Buck LB (1993) A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell 73(3):597–609PubMedCrossRefGoogle Scholar
  26. 26.
    Ressler KJ, Sullivan SL, Buck LB (1994) Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79(7):1245–1255PubMedCrossRefGoogle Scholar
  27. 27.
    Firestein S (2001) How the olfactory system makes sense of scents. Nature 413(6852):211–218PubMedCrossRefGoogle Scholar
  28. 28.
    Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96(5):713–723PubMedCrossRefGoogle Scholar
  29. 29.
    Branca A, Simonian P, Ferrante M, Novas E, Negri RMn (2003) Electronic nose based discrimination of a perfumery compound in a fragrance. Sens Actuat B-Chem 92(1–2):222–227CrossRefGoogle Scholar
  30. 30.
    Oh EH, Song HS, Park TH (2011) Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme Microb Technol 48(6–7):427–437PubMedCrossRefGoogle Scholar
  31. 31.
    Capone S, Siciliano P, Quaranta F, Rella R, Epifani M, Vasanelli L (2000) Analysis of vapours and foods by means of an electronic nose based on a sol–gel metal oxide sensors array. Sens Actuators B-Chem 69(3):230–235CrossRefGoogle Scholar
  32. 32.
    Cerrato Oliveros MC, Pérez Pavón JL, García Pinto C, Fernández Laespada ME, Moreno Cordero B, Forina M (2002) Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils. Anal Chim Acta 459(2):219–228CrossRefGoogle Scholar
  33. 33.
    Dutta R, Hines EL, Gardner JW, Kashwan KR, Bhuyan M (2003) Tea quality prediction using a tin oxide-based electronic nose: an artificial intelligence approach. Sens Actuat B-Chem 94(2):228–237CrossRefGoogle Scholar
  34. 34.
    El Barbri N, Amari A, Vinaixa M, Bouchikhi B, Correig X, Llobet E (2007) Building of a metal oxide gas sensor-based electronic nose to assess the freshness of sardines under cold storage. Sens Actuat B-Chem 128(1):235–244CrossRefGoogle Scholar
  35. 35.
    González Martín Y, Cerrato Oliveros MC, Pérez Pavón JL, García Pinto C, Moreno Cordero B (2001) Electronic nose based on metal oxide semiconductor sensors and pattern recognition techniques: characterisation of vegetable oils. Anal Chimica Acta 449(1–2):69–80CrossRefGoogle Scholar
  36. 36.
    Crone B, Dodabalapur A, Gelperin A, Torsi L, Katz HE, Lovinger AJ, Bao Z (2001) Electronic sensing of vapors with organic transistors. Appl Phys Lett 78(15):2229–2231CrossRefGoogle Scholar
  37. 37.
    Doleman BJ, Lewis NS (2001) Comparison of odor detection thresholds and odor discriminablities of a conducting polymer composite electronic nose versus mammalian olfaction. Sens Actuat B-Chem 72(1):41–50CrossRefGoogle Scholar
  38. 38.
    Hatfield JV, Neaves P, Hicks PJ, Persaud K, Travers P (1994) Towards an integrated electronic nose using conducting polymer sensors. Sens Actuat B-Chem 18(1–3):221–228CrossRefGoogle Scholar
  39. 39.
    Torsi L, Dodabalapur A, Sabbatini L, Zambonin PG (2000) Multi-parameter gas sensors based on organic thin-film-transistors. Sens Actuat B-Chem 67(3):312–316CrossRefGoogle Scholar
  40. 40.
    Hao HC, Tang KT, Ku PH, Chao JS, Li CH, Yang CM, Yao DJ (2010) Development of a portable electronic nose based on chemical surface acoustic wave array with multiplexed oscillator and readout electronics. Sens Actuat B-Chem 146(2):545–553CrossRefGoogle Scholar
  41. 41.
    Gan HL, Man YBC, Tan CP, NorAini I, Nazimah SAH (2005) Characterisation of vegetable oils by surface acoustic wave sensing electronic nose. Food Chem 89(4):507–518CrossRefGoogle Scholar
  42. 42.
    García M, Fernández MJ, Fontecha JL, Lozano J, Santos JP, Aleixandre M, Sayago I, Gutiérrez J, Horrillo MC (2006) Differentiation of red wines using an electronic nose based on surface acoustic wave devices. Talanta 68(4):1162–1165PubMedCrossRefGoogle Scholar
  43. 43.
    Li C, Heinemann P, Sherry R (2007) Neural network and Bayesian network fusion models to fuse electronic nose and surface acoustic wave sensor data for apple defect detection. Sens Actuat B-Chem 125(1):301–310CrossRefGoogle Scholar
  44. 44.
    Göpel W (1998) Chemical imaging: I. Concepts and visions for electronic and bioelectronic noses. Sens Actuat B-Chem 52(1–2):125–142CrossRefGoogle Scholar
  45. 45.
    Kim TH, Lee SH, Lee J, Song HS, Oh EH, Park TH, Hong S (2009) Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose. Adv Mater 21(1):91–94CrossRefGoogle Scholar
  46. 46.
    Lee SH, Kwon OS, Song HS, Park SJ, Sung JH, Jang J, Park TH (2012) Mimicking the human smell sensing mechanism with an artificial nose platform. Biomaterials 33(6):1722–1729PubMedCrossRefGoogle Scholar
  47. 47.
    Lee SH, Park TH (2010) Recent advances in the development of bioelectronic nose. Biotechnol Bioprocess Eng 15(1):22–29CrossRefGoogle Scholar
  48. 48.
    Malnic B, Godfrey PA, Buck LB (2004) The human olfactory receptor gene family. Proc Natl Acad Sci U S A 101(8):2584–2589PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Buck LB (2004) Olfactory receptors and odor coding in mammals. Nutr Rev 62:S184–S188CrossRefGoogle Scholar
  50. 50.
    Lim JH, Park J, Ahn JH, Jin HJ, Hong S, Park TH (2013) A peptide receptor-based bioelectronic nose for the real-time determination of seafood quality. Biosens Bioelectron 39(1):244–249PubMedCrossRefGoogle Scholar
  51. 51.
    Kiefer H, Krieger J, Olszewski JD, von Heijne G, Prestwich GD, Breer H (1996) Expression of an olfactory receptor in Escherichia coli: purification, reconstitution, and ligand binding. Biochemistry 35(50):16077–16084PubMedCrossRefGoogle Scholar
  52. 52.
    Ko HJ, Park TH (2006) Dual signal transduction mediated by a single type of olfactory receptor expressed in a heterologous system. Biol Chem, 387(1):59–68PubMedCrossRefGoogle Scholar
  53. 53.
    Krautwurst D, Yau K-W, Reed RR (1998) Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95(7):917–926PubMedCrossRefGoogle Scholar
  54. 54.
    Zhao H, Ivic L, Otaki JM, Hashimoto M, Mikoshiba K, Firestein S (1998) Functional expression of a mammalian odorant receptor. Science 279(5348):237–242PubMedCrossRefGoogle Scholar
  55. 55.
    Wu L, Pan Y, Chen G-Q, Matsunami H, Zhuang H (2012) Receptor-transporting Protein 1 short (RTP1S) mediates translocation and activation of odorant receptors by acting through multiple steps. J Biol Chem 287(26):22287–22294PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Zhuang H, Matsunami H (2007) Synergism of accessory factors in functional expression of mammalian odorant receptors. J Biol Chem 282(20):15284–15293PubMedCrossRefGoogle Scholar
  57. 57.
    Zhuang H, Matsunami H (2008) Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nat Protoc 3(9):1402–1413PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Kiely A, Authier A, Kralicek AV, Warr CG, Newcomb RD (2007) Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells. J Neurosci Methods 159(2):189–194PubMedCrossRefGoogle Scholar
  59. 59.
    Matarazzo V, Clot-Faybesse O, Marcet B, Guiraudie-Capraz G, Atanasova B, Devauchelle G, Cerutti M, Etiévant P, Ronin C (2005) Functional characterization of two human olfactory receptors expressed in the baculovirus Sf9 insect cell system. Chem Sens 30(3):195–207CrossRefGoogle Scholar
  60. 60.
    Minic J, Persuy MA, Godel E, Aioun J, Connerton I, Salesse R, Pajot-Augy E (2005) Functional expression of olfactory receptors in yeast and development of a bioassay for odorant screening. FEBS J 272(2):524–537PubMedCrossRefGoogle Scholar
  61. 61.
    Song HS, Lee SH, Oh EH, Park TH (2009) Expression, solubilization and purification of a human olfactory receptor from Escherichia coli. Curr Microbiol 59(3):309–314PubMedCrossRefGoogle Scholar
  62. 62.
    Ko HJ, Park TH (2005) Piezoelectric olfactory biosensor: ligand specificity and dose-dependence of an olfactory receptor expressed in a heterologous cell system. Biosens Bioelectron 20(7):1327–1332PubMedCrossRefGoogle Scholar
  63. 63.
    Sankaran S, Panigrahi S, Mallik S (2011) Olfactory receptor based piezoelectric biosensors for detection of alcohols related to food safety applications. Sens Actuat B-Chem 155(1):8–18CrossRefGoogle Scholar
  64. 64.
    Sankaran S, Panigrahi S, Mallik S (2011) Odorant binding protein based biomimetic sensors for detection of alcohols associated with Salmonella contamination in packaged beef. Biosens Bioelectron 26(7):3103–3109PubMedCrossRefGoogle Scholar
  65. 65.
    Sung JH, Ko HJ, Park TH (2006) Piezoelectric biosensor using olfactory receptor protein expressed in Escherichia coli. Biosens Bioelectron 21(10):1981–1986PubMedCrossRefGoogle Scholar
  66. 66.
    Wu T-Z (1999) A piezoelectric biosensor as an olfactory receptor for odour detection: electronic nose. Biosens Bioelectron 14(1):9–18PubMedCrossRefGoogle Scholar
  67. 67.
    Benilova I, Chegel V, Ushenin Y, Vidic J, Soldatkin A, Martelet C, Pajot E, Jaffrezic-Renault N (2008) Stimulation of human olfactory receptor 17–40 with odorants probed by surface plasmon resonance. Eur Biophys J 37(6):807–814PubMedCrossRefGoogle Scholar
  68. 68.
    Vidic J, Pla-Roca M, Grosclaude J, Persuy M-A, Monnerie R, Caballero D, Errachid A, Hou Y, Jaffrezic-Renault N, Salesse R, Pajot-Augy E, Samitier J (2007) Gold surface functionalization and patterning for specific immobilization of olfactory receptors carried by nanosomes. Anal Chem 79(9):3280–3290PubMedCrossRefGoogle Scholar
  69. 69.
    Vidic JM, Grosclaude J, Persuy M-A, Aioun J, Salesse R, Pajot-Augy E (2006) Quantitative assessment of olfactory receptors activity in immobilized nanosomes: a novel concept for bioelectronic nose. Lab Chip 6(8):1026–1032PubMedCrossRefGoogle Scholar
  70. 70.
    Yoon H, Lee SH, Kwon OS, Song HS, Oh EH, Park TH, Jang J (2009) Polypyrrole nanotubes conjugated with human olfactory receptors: high-performance transducers for FET-type bioelectronic noses. Angew Chem Int Ed Engl 48(15):2755–2758Google Scholar
  71. 71.
    Lee SH, Jin HJ, Song HS, Hong S, Park TH (2012) Bioelectronic nose with high sensitivity and selectivity using chemically functionalized carbon nanotube combined with human olfactory receptor. J Biotechnol 157(4):467–472PubMedCrossRefGoogle Scholar
  72. 72.
    Park SJ, Kwon OS, Lee SH, Song HS, Park TH, Jang J (2012) Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett 12(10):5082–5090PubMedCrossRefGoogle Scholar
  73. 73.
    Katada S, Hirokawa T, Oka Y, Suwa M, Touhara K (2005) Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 25(7):1806–1815PubMedCrossRefGoogle Scholar
  74. 74.
    Wetzel CH, Oles M, Wellerdieck C, Kuczkowiak M, Gisselmann G, Hatt H (1999) Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus laevis oocytes. J Neurosci 19(17):7426–7433PubMedGoogle Scholar
  75. 75.
    Lee JY, Ko HJ, Lee SH, Park TH (2006) Cell-based measurement of odorant molecules using surface plasmon resonance. Enzyme Microb Technol 39(3):375–380CrossRefGoogle Scholar
  76. 76.
    Lee SH, Jeong SH, Jun SB, Kim SJ, Park TH (2009) Enhancement of cellular olfactory signal by electrical stimulation. Electrophoresis 30(18):3283–3288PubMedCrossRefGoogle Scholar
  77. 77.
    Lee SH, Jun SB, Ko HJ, Kim SJ, Park TH (2009) Cell-based olfactory biosensor using microfabricated planar electrode. Biosens Bioelectron 24(8):2659–2664PubMedCrossRefGoogle Scholar
  78. 78.
    Lee SH, Ko HJ, Park TH (2009) Real-time monitoring of odorant-induced cellular reactions using surface plasmon resonance. Biosens Bioelectron 25(1):55–60PubMedCrossRefGoogle Scholar
  79. 79.
    Pick H, Schmid EL, Tairi A-P, Ilegems E, Hovius R, Vogel H (2005) Investigating cellular signaling reactions in single attoliter vesicles. J Am Chem Soc 127(9):2908–2912PubMedCrossRefGoogle Scholar
  80. 80.
    Jin HJ, Lee SH, Kim TH, Park J, Song HS, Park TH, Hong S (2012) Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction. Biosens Bioelectron 35(1):335–341PubMedCrossRefGoogle Scholar
  81. 81.
    Park J, Lim JH, Jin HJ, Namgung S, Lee SH, Park TH, Hong S (2012) A bioelectronic sensor based on canine olfactory nanovesicle-carbon nanotube hybrid structures for the fast assessment of food quality. Analyst 137(14):3249–3254PubMedCrossRefGoogle Scholar
  82. 82.
    Lim JH, Park J, Oh EH, Ko HJ, Hong S, Park TH (2013) Nanovesicle-based bioelectronic nose for the diagnosis of lung cancer from human blood. Adv Healthc Mater. doi: 10.1002/adhm.201300174Google Scholar
  83. 83.
    Auge J, Hauptmann P, Hartmann J, Rösler S, Lucklum R (1995) New design for QCM sensors in liquids. Sens Actuat B-Chem 24(1–3):43–48CrossRefGoogle Scholar
  84. 84.
    Resa P, Castro P, Rodríguez-López J, Elvira L (2012) Broadband spike excitation method for in-liquid QCM sensors. Sens Actuat B-Chem 166–167(0):275–280CrossRefGoogle Scholar
  85. 85.
    Shen S, Liu T, Guo J (1998) Optical phase-shift detection of surface plasmon resonance. Appl Optics 37(10):1747–1751CrossRefGoogle Scholar
  86. 86.
    Benilova IV, Minic Vidic J, Pajot-Augy E, Soldatkin AP, Martelet C, Jaffrezic-Renault N (2008) Electrochemical study of human olfactory receptor OR 17–40 stimulation by odorants in solution. Mater Sci Eng C 28(5–6):633–639CrossRefGoogle Scholar
  87. 87.
    Hou Y, Jaffrezic-Renault N, Martelet C, Zhang A, Minic-Vidic J, Gorojankina T, Persuy M-A, Pajot-Augy E, Salesse R, Akimov V, Reggiani L, Pennetta C, Alfinito E, Ruiz O, Gomila G, Samitier J, Errachid A (2007) A novel detection strategy for odorant molecules based on controlled bioengineering of rat olfactory receptor I7. Biosens Bioelectron 22(7):1550–1555PubMedCrossRefGoogle Scholar
  88. 88.
    Rao SG, Huang L, Setyawan W, Hong S (2003) Nanotube electronics: Large-scale assembly of carbon nanotubes. Nature 425(6953):36–37PubMedCrossRefGoogle Scholar
  89. 89.
    Kim B, Song HS, Jin HJ, Park EJ, Lee SH, Lee BY, Park TH, Hong S (2013) Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors. Nanotechnology 24(28):285501PubMedCrossRefGoogle Scholar
  90. 90.
    Kim TH, Song HS, Jin HJ, Lee SH, Namgung S, Kim U-k, Park TH, Hong S (2011) “Bioelectronic super-taster” device based on taste receptor-carbon nanotube hybrid structures. Lab Chip 11(13):2262–2267PubMedCrossRefGoogle Scholar
  91. 91.
    Kwon OS, Ahn SR, Park SJ, Song HS, Lee SH, Lee JS, Hong J-Y, Lee JS, You SA, Yoon H, Park TH, Jang J (2012) Ultrasensitive and selective recognition of peptide hormone using close-packed arrays of hPTHR-conjugated polymer nanoparticles. ACS Nano 6(6):5549–5558PubMedCrossRefGoogle Scholar
  92. 92.
    Song HS, Kwon OS, Lee SH, Park SJ, Kim U-K, Jang J, Park TH (2012) Human taste receptor-functionalized field effect transistor as a human-like nanobioelectronic tongue. Nano Lett 13(1):172–178PubMedCrossRefGoogle Scholar
  93. 93.
    Egashira M, Shimizu Y, Takao Y (1990) Trimethylamine sensor based on semiconductive metal oxides for detection of fish freshness. Sens Actuat B-Chem 1(1–6):108–112CrossRefGoogle Scholar
  94. 94.
    Oka Y, Omura M, Kataoka H, Touhara K (2004) Olfactory receptor antagonism between odorants. EMBO J 23(1):120–126PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Jacquier V, Pick H, Vogel H (2006) Characterization of an extended receptive ligand repertoire of the human olfactory receptor OR17-40 comprising structurally related compounds. J Neurochem 97(2):537–544PubMedCrossRefGoogle Scholar
  96. 96.
    Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJP, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106(3):381–390PubMedCrossRefGoogle Scholar
  97. 97.
    Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2(60):ra9Google Scholar
  98. 98.
    Briand L, Eloit C, Nespoulous C, Bézirard V, Huet J-C, Henry C, Blon F, Trotier D, Pernollet J-C (2002) Evidence of an odorant-binding protein in the human olfactory mucus: location, structural characterization, and odorant-binding properties. Biochemistry 41(23):7241–7252PubMedCrossRefGoogle Scholar
  99. 99.
    Pelosi P (1994) Odorant-binding proteins. Crit Rev Biochem Mol Biol 29(3):199–228PubMedCrossRefGoogle Scholar
  100. 100.
    Goldsmith BR, Mitala JJ, Josue J, Castro A, Lerner MB, Bayburt TH, Khamis SM, Jones RA, Brand JG, Sligar SG, Luetje CW, Gelperin A, Rhodes PA, Discher BM, Johnson ATC (2011) Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins. ACS Nano 5(7):5408–5416PubMedCrossRefGoogle Scholar
  101. 101.
    Hoare SRJ (2005) Mechanisms of peptide and nonpeptide ligand binding to Class B G-protein-coupled receptors. Drug Discov Today 10(6):417–427PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Chemical and Biological EngineeringSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations