Skip to main content

Anhedonia in Schizophrenia: A Deficit in Translating Reward Information into Motivated Behavior

  • Chapter
  • First Online:

Abstract

Anhedonia has long been considered a core clinical feature of schizophrenia, which is thought to be an important predictor of functional outcome and disease liability. However, recent developments in the affective neuroscience of schizophrenia suggest that the traditional understanding of anhedonia as a diminished capacity for pleasure may not correctly characterize the affective abnormalities that occur in this patient population. In the current chapter, literature is reviewed to suggest that anhedonia in schizophrenia primarily reflects a deficit in initiating activities aimed at receiving rewards, rather than a reduced capacity to experience pleasure when patients are exposed to rewards. Multiple psychological and neural mechanisms appear to impair the translation of intact hedonic responses into goal directed behavior in schizophrenia. Several of these mechanisms are reviewed here, including: (1) dopamine-mediated basal ganglia systems that support reinforcement learning and the ability to predict cues that lead to rewarding outcomes; (2) orbitofrontal cortex-driven deficits in generating, updating, and maintaining value representations; (3) aberrant effort-value computations, which may be mediated by disrupted anterior cingulate cortex and midbrain dopamine functioning; (4) altered activation of the prefrontal cortex, which is important for generating exploratory behaviors in environments where reward outcomes are uncertain. Overall, findings suggest that aberrant cortical-striatal interactions are involved with the reduced frequency of pleasurable activities that characterizes schizophrenia. Suggestions are provided for the development of novel behavioral intervention strategies that make use of external cues and reinforcers designed to facilitate goal-directed behavior in light of these various reward-processing deficits. Future directions for examining anhedonia in relation to modern affective neuroscience perspectives are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACC:

Anterior cingulate cortex

BG:

Basal Ganglia

BNSS:

Brief Negative Symptom Scale

CAINS:

Clinical Assessment Interview for Negative Symptoms

CBT:

Cognitive Behavioral Therapy

DA:

Dopamine

DLPFC:

Dorsolateral prefrontal cortex

fMRI:

Functional Magnetic Resonance Imaging

OFC:

Orbitofrontal Cortex

PET:

Positron Emission Tomography

PFC:

Prefrontal Cortex

VLPFC:

Ventrolateral Prefrontal cortex

VMPFC:

Ventromedial prefrontal cortex

SANS:

Scale for the Assessment of Negative Symptoms

References

  1. Kraepelin E. Dementia praecox and paraphrenia (Bradley RM, trans). Huntington, NY: Robert E Krieger Publishing Co; [1917]; 1971.

    Google Scholar 

  2. Bleuler E. Dementia praecox or the group of schizophrenias (Zinkin J, trans). New York: International Universities Press; 1950 [1911].

    Google Scholar 

  3. Rado S. Psychoanalysis of behavior: the collected papers of Sandor Rado, vol. 2. New York: Grune and Stratton; 1962.

    Google Scholar 

  4. Meehl PE. Schizotaxia, schizotypy, schizophrenia. Am Psychol. 1962;17:827–38.

    Google Scholar 

  5. Kwapil TR. Social anhedonia as a predictor of the development of schizophrenia-spectrum disorders. J Abnorm Psychol. 1998;107:558–65.

    CAS  PubMed  Google Scholar 

  6. Herbener ES, Harrow M, Hill SK. Change in the relationship between anhedonia and functional deficits over a 20-year period in individuals with schizophrenia. Schizophr Res. 2005;75:97–105.

    PubMed  Google Scholar 

  7. Strauss GP, Harrow M, Grossman LS, et al. Periods of recovery in deficit syndrome schizophrenia: a 20-year multi-follow-up longitudinal study. Schizophr Bull. 2010;36:788–99.

    PubMed  Google Scholar 

  8. Kring AM, Neale JM. Do schizophrenic patients show a disjunctive relationship among expressive, experiential, and psychophysiological components of emotion? J Abnorm Psychol. 1996;105:249–57.

    CAS  PubMed  Google Scholar 

  9. Kring AM, Kerr SL, Smith DA, Neale JM. Flat affect in schizophrenia does not reflect diminished subjective experience of emotion. J Abnorm Psychol. 1993;102:507–17.

    CAS  PubMed  Google Scholar 

  10. Kring AM, Moran EK. Emotional response deficits in schizophrenia: insights from affective science. Schizophr Bull. 2008;34:819.

    PubMed  Google Scholar 

  11. Curtis CE, Lebow B, Lake DS, Katsanis J, Iacono WG. Acoustic startle reflex in schizophrenia patients and their first-degree relatives: evidence of normal emotional modulation. Psychophysiology. 1999;36:469–75.

    CAS  PubMed  Google Scholar 

  12. Lee E, Kim JJ, Namkoong K, et al. Aberrantly flattened responsivity to emotional pictures in paranoid schizophrenia. Psychiatry Res. 2006;143:135–45.

    PubMed  Google Scholar 

  13. Quirk SW, Strauss ME, Sloan DM. Emotional response as a function of symptoms in schizophrenia. Schizophr Res. 1998;32:31–9.

    CAS  PubMed  Google Scholar 

  14. Strauss GP, Allen DN, Ross SA, Duke LA, Schwartz J. Olfactory hedonic judgment in patients with deficit syndrome schizophrenia. Schizophr Bull. 2010;36(4):860.

    PubMed  Google Scholar 

  15. Kamath V, Moberg PJ, Kohler CG, Gur RE, Turetsky BI. Odor hedonic capacity and anhedonia in schizophrenia and unaffected first-degree relatives of schizophrenia patients. Schizophr Bull. 2011;187(1–2):30–5.

    Google Scholar 

  16. Cohen AS, Minor KS. Emotional experience in patients with schizophrenia revisited: meta-analysis of laboratory studies. Schizophr Bull. 2010;36:143–50.

    PubMed  Google Scholar 

  17. Llerena K, Strauss GP, Cohen AS. Looking at the other side of the coin: a meta-analysis of self-reported emotional arousal in people with schizophrenia. Schizophr Res. 2012;142:65–70.

    PubMed Central  PubMed  Google Scholar 

  18. Strauss GP, Gold JM. A new perspective on anhedonia in schizophrenia. Am J Psychiatry. 2012;169:364–73.

    PubMed Central  PubMed  Google Scholar 

  19. Kirkpatrick B, Buchanan RW, Ross DE, Carpenter Jr WT. A separate disease within the syndrome of schizophrenia. Arch Gen Psychiatry. 2001;58:165–71.

    CAS  PubMed  Google Scholar 

  20. Strauss GP, Herbener ES. Patterns of emotional experience in schizophrenia: differences in emotional response to visual stimuli are associated with clinical presentation and functional outcome. Schizophr Res. 2011;128:117–23.

    PubMed Central  PubMed  Google Scholar 

  21. Gur RE, Loughead J, Kohler CG, Elliot MA, Lesko K, et al. Limbic activation associated with misidentification of fearful faces and flat affect in schizophrenia. Arch Gen Psychiatry. 2007;64(12):1356–66.

    PubMed  Google Scholar 

  22. Ursu S, Kring AM, Gard MG, Minzenberg MJ, Yoon JH, et al. Prefrontal cortical deficits and impaired cognition-emotion interactions in schizophrenia. Am J Psychiatry. 2011;168(3):276–85.

    PubMed  Google Scholar 

  23. Anticevic A, van Snellenberg J, Cohen R, Repovs G, Dowd E, Barch D. Amygdala recruitment in schizophrenia in response to aversive emotional material: a meta-analysis of neuroimaging studies. Schizophr Bull. 2012;38(3):608–21.

    PubMed  Google Scholar 

  24. Taylor SF, Kang J, Brege I, Tso I, Hosanagar A, Johnson T. Meta-analysis of functional neuroimaging studies of emotion perception and experience in schizophrenia. Biol Psychiatry. 2012;71:136–45.

    PubMed Central  PubMed  Google Scholar 

  25. Kring AM, Elis O. Emotion deficits in people with schizophrenia. Annu Rev Clin Psychol. 2012;9:409–33.

    PubMed  Google Scholar 

  26. Myin-Germeys I, Delespaul PAEG, de Vries MW. Schizophrenic patients are more emotionally active than is assumed based on their behavior. Schizophr Bull. 2000;268:47–85.

    Google Scholar 

  27. Myin-Germeys I, Nicolson NA, Delespaul PA. The context of delusional experiences in the daily life of patients with schizophrenia. Psychol Med. 2001;31:489–98.

    CAS  PubMed  Google Scholar 

  28. Gard DE, Kring AM, Gard MG, Horan WP, Green MF. Anhedonia in schizophrenia: distinctions between anticipatory and consummatory pleasure. Schizophr Res. 2007;93:253–60.

    PubMed Central  PubMed  Google Scholar 

  29. Oorschot M, Lataster T, Thewissen V, Lardinois M, Wichers M, van Os J, et al. Emotional experience in negative symptoms of schizophrenia—no evidence for a generalized hedonic deficit. Schizophr Bull. 2013;39:217–25.

    PubMed  Google Scholar 

  30. Horan WP, Kring AM, Blanchard JJ. Anhedonia in schizophrenia: a review of assessment strategies. Schizophr Bull. 2006;32(2):259–73.

    PubMed  Google Scholar 

  31. Andreasen NC. The scale for assessment of negative symptoms (SANS). Iowa City: University Press; 1983.

    Google Scholar 

  32. Kirkpatrick B, Strauss GP, Nguyen L, Fischer BA, Daniel DG, et al. The Brief Negative Symptom Scale: psychometric properties. Schizophr Bull. 2011;37(2):300–5.

    PubMed  Google Scholar 

  33. Kring AM, Gur RE, Blanchard JJ, Horan WP, Reise SP. The Clinical Assessment Interview for Negative Symptoms (CAINS): final development and validation. Am J Psychiatry. 2013;170:165–72.

    PubMed Central  PubMed  Google Scholar 

  34. Barch DM, Dowd EC. Goal representations and motivational drive in schizophrenia: the role of prefrontal-striatal interactions. Schizophr Bull. 2010;36:919–34.

    PubMed  Google Scholar 

  35. Gold JM, Waltz JM, Prentice KJ, Morris SE, Heerey EA. Reward processing in schizophrenia: a deficit in the representation of value. Schizophr Bull. 2008;34:835–47.

    PubMed  Google Scholar 

  36. Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275:1593–9.

    CAS  PubMed  Google Scholar 

  37. Waltz JA, Gold JM. Probabilistic reversal learning impairments in schizophrenia: further evidence of orbitofrontal dysfunction. Schizophr Res. 2007;93:296–303.

    PubMed Central  PubMed  Google Scholar 

  38. Waltz JA, Frank MJ, Wiecki TV, Gold JM. Altered probabilistic learning and response biases in schizophrenia: behavioral evidence and neurocomputational modeling. Neuropsychology. 2011;25:86–97.

    PubMed Central  PubMed  Google Scholar 

  39. Waltz JA, Schweitzer JB, Ross TJ, Kurup PK, Salmeron BJ, et al. Abnormal responses to monetary outcomes in cortex, but not in the basal ganglia, in schizophrenia. Neuropsychopharmacology. 2010;35:2427–39.

    PubMed  Google Scholar 

  40. Waltz JA, Kasanova Z, Ross TJ, Salmeron BJ, McMahon RP, et al. The roles of reward, default, and executive control networks in set-shifting impairments in schizophrenia. PLoS One. 2013;8(2):e57257. doi:10.1371/journal.pone.0057257.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Green MF, Kern RS, Williams O, McGurk S, Kee K. Procedural learning in schizophrenia: evidence from serial reaction time. Cognit Neuropsychiatry. 1997;2:123–34.

    Google Scholar 

  42. Goldberg TE, Saint-Cyr JA, Weinberger DR. Assessment of procedural learning and problem solving in schizophrenic patients by Tower of Hanoi type tasks. J Neuropsychiatry Clin Neurosci. 1990;2:165–73.

    CAS  PubMed  Google Scholar 

  43. Foerde K, Poldrack RA, Khan BJ, et al. Selective corticostriatal dysfunction in schizophrenia: examination of motor and cognitive skill learning. Neuropsychology. 2008;22:100–9.

    PubMed  Google Scholar 

  44. Kumari V, Gray JA, Honey GD, et al. Procedural learning in schizophrenia: a functional magnetic resonance imaging investigation. Schizophr Res. 2002;57:97–107.

    PubMed  Google Scholar 

  45. Gold JM, Hahn B, Strauss GP, Waltz JA. Turning it upside down: areas of preserved cognitive function in schizophrenia. Neuropsychol Rev. 2009;19:294–311.

    PubMed Central  PubMed  Google Scholar 

  46. Keri S, Nagy O, Kelemen O, Myers CE, Gluck MA. Dissociation between medial temporal lobe and basal ganglia memory systems in schizophrenia. Schizophr Res. 2005;77:321–8.

    PubMed  Google Scholar 

  47. Scherer H, Stip E, Paquet F, Bedard MA. Mild procedural learning disturbances in neuroleptic-naive patients with schizophrenia. J Neuropsychiatry Clin Neurosci. 2003;15:58–63.

    PubMed  Google Scholar 

  48. Reiss JP, Campbell DW, Leslie WD, Paulus MP, Ryner LN, Polimeni JO, et al. Deficit in schizophrenia to recruit the striatum in implicit learning: a functional magnetic resonance imaging investigation. Schizophr Res. 2006;87:127–37.

    PubMed  Google Scholar 

  49. Weickert TW, Goldberg TE, Callicott JH, Chen Q, Apud JA, Das S, et al. Neural correlates of probabilistic category learning in patients with schizophrenia. J Neurosci. 2009;29:1244–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Waltz JA, Frank MJ, Robinson BM, Gold JM. Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction. Biol Psychiatry. 2007;62:756–64.

    PubMed Central  PubMed  Google Scholar 

  51. Strauss GP, Frank MF, Waltz JA, Kasanova Z, Herbener ES, Gold JM. Deficits in positive reinforcement learning and uncertainty-driven exploration are associated with distinct aspects of negative symptoms in schizophrenia. Biol Psychiatry. 2011;69:424–31.

    PubMed Central  PubMed  Google Scholar 

  52. Gold JM, Waltz JA, Matveeva TM, Kasanova Z, Strauss GP, Herbener ES, Collins AGE, Frank MJ. Negative symptoms in schizophrenia result from a failure to represent the expected value of rewards: behavioral and computational modeling evidence. Arch Gen Psychiatry. 2012;69:129–38.

    PubMed  Google Scholar 

  53. Walter H, Kammerer H, Frasch K, Spitzer M, Abler B. Altered reward functions in patients on atypical antipsychotic medication in line with the revised dopamine hypothesis of schizophrenia. Psychopharmacology (Berl). 2009;206:121–32.

    CAS  Google Scholar 

  54. Waltz JA, Schweitzer JB, Gold JM, et al. Patients with schizophrenia have a reduced neural response to both unpredictable and predictable primary reinforcers. Neuropsychopharmacology. 2009;34:1567–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Schlagenhauf F, Sterzer P, Schmack K, Ballmaier M, Rapp M, et al. Reward feedback alterations in unmedicated schizophrenia patients: relevance for delusions. Biol Psychiatry. 2009;65:1032–9.

    PubMed  Google Scholar 

  56. Murray GK, Corlett PR, Clark L, et al. Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Mol Psychiatry. 2008;13:267–76.

    CAS  Google Scholar 

  57. Koch K, Schachtzabel C, Wagner G, et al. Altered activation in association with reward-related trial-and-error learning in patients with schizophrenia. Neuroimage. 2009;50:223–32.

    PubMed  Google Scholar 

  58. Gradin VB, Kumar P, Waiter G, Ahearn T, Stickle C, et al. Expected value and prediction error abnormalities in depression and schizophrenia. Brain. 2011;134:1751–64.

    PubMed  Google Scholar 

  59. Corlett PR, Murray GK, Honey GD, Aitken MRF, Shanks DR, Robbins TW, et al. Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions. Brain. 2007;130:2387–400.

    CAS  PubMed  Google Scholar 

  60. Dowd EC, Barch DM. Pavlovian reward prediction and receipt in schizophrenia: relationship to anhedonia. PLoS One. 2012;7(5):e35622.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Simon JJ, Biller A, Walther S, Roesch-Ely D, Stippich C, et al. Neural correlates of reward processing in schizophrenia-relationship to apathy and depression. Schizophr Res. 2009;18:154–61.

    Google Scholar 

  62. Juckel G, Schlagenhauf F, Koslowski M, et al. Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage. 2006;29:409–16.

    PubMed  Google Scholar 

  63. Juckel G, Schlagenhauf F, Koslowski M, Filonov D, Wüstenberg T, et al. Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics. Psychopharmacology (Berl). 2006;187:222–8.

    CAS  Google Scholar 

  64. Nielsen MO, Rostrup E, Wulff S, Bak N, Lublin H, Kapur S, Glenthøj B. Alterations of the brain reward system in antipsychotic naive schizophrenia patients. Biol Psychiatry. 2012;71:898–905.

    PubMed  Google Scholar 

  65. Wallis JD. Orbitofrontal cortex and its contribution to decision-making. Annu Rev Neurosci. 2007;30:31–56.

    CAS  PubMed  Google Scholar 

  66. Elliott R, McKenna PJ, Robbins TW, Sahakian BJ. Neuropsychological evidence for frontostriatal dysfunction in schizophrenia. Psychol Med. 1995;25:619–30. 131.

    CAS  PubMed  Google Scholar 

  67. Tyson PJ, Laws KR, Roberts KH, Mortimer AM. Stability of set-shifting and planning abilities in patients with schizophrenia. Psychiatry Res. 2004;129:229–39.

    PubMed  Google Scholar 

  68. Ceaser AE, Goldberg TE, Egan MF, McMahon RP, Weinberger DR, Gold JM. Set-shifting ability and schizophrenia: a marker of clinical illness or an intermediate phenotype? Biol Psychiatry. 2008;64:782–8.

    PubMed Central  PubMed  Google Scholar 

  69. Oades RD. Stimulus dimension shifts in patients with schizophrenia, with and without paranoid hallucinatory symptoms, or obsessive compulsive disorder: strategies, blocking and monoamine status. Behav Brain Res. 1997;88:115–31.

    CAS  PubMed  Google Scholar 

  70. Pantelis C, Barber FZ, Barnes TR, Nelson HE, Owen AM, Robbins TW. Comparison of set-shifting ability in patients with chronic schizophrenia and frontal lobe damage. Schizophr Res. 1999;37:251–70.

    CAS  PubMed  Google Scholar 

  71. Shurman B, Horan WP, Nuechterlein KH. Schizophrenia patients demonstrate a distinctive pattern of decision-making impairment on the Iowa Gambling Task. Schizophr Res. 2005;72:215–24.

    PubMed  Google Scholar 

  72. Sevy S, Burdick KE, Visweswaraiah H, et al. Iowa gambling task in schizophrenia: a review and new data in patients with schizophrenia and co-occurring cannabis use disorders. Schizophr Res. 2007;92:74–84.

    PubMed Central  PubMed  Google Scholar 

  73. Lee Y, Kim YT, Seo E, et al. Dissociation of emotional decision-making from cognitive decision-making in chronic schizophrenia. Psychiatry Res. 2007;152:113–20.

    PubMed  Google Scholar 

  74. Martino DJ, Bucay D, Butman JT, Allegri RF. Neuropsychological frontal impairments and negative symptoms in schizophrenia. Psychiatry Res. 2007;152:121–8.

    PubMed  Google Scholar 

  75. KesterHM SS, Yechiam E, Burdick KE, Cervellione KL, Kumra S. Decision-making impairments in adolescents with early-onset schizophrenia. Schizophr Res. 2006;85:113–23.

    Google Scholar 

  76. Premkumar P, Fannon D, Kuipers E, Simmons A, Frangou S, Kumari V. Emotional decision-making and its dissociable components in schizophrenia and schizoaffective disorder: a behavioural and MRI investigation. Neuropsychologia. 2008;46:2002–12.

    PubMed Central  PubMed  Google Scholar 

  77. Yip SW, Sacco KA, George TP, Potenza MN. Risk/reward decision-making in schizophrenia: a preliminary examination of the influence of tobacco smoking and relationship to Wisconsin Card Sorting Task performance. Schizophr Res. 2009;110:156–64.

    PubMed Central  PubMed  Google Scholar 

  78. Kim YT, Lee KU, Lee SJ. Deficit in decision-making in chronic, stable schizophrenia: from a reward and punishment perspective. Psychiatry Investig. 2009;6:26–33.

    PubMed Central  PubMed  Google Scholar 

  79. Evans CE, Bowman CH, Turnbull OH. Subjective awareness on the Iowa Gambling Task: the key role of emotional experience in schizophrenia. J Clin Exp Neuropsychol. 2005;27:656–64.

    PubMed  Google Scholar 

  80. Rodriguez-Sanchez JM, Crespo-Facorro B, Perez-Iglesias R, et al. Prefrontal cognitive functions in stabilized first-episode patients with schizophrenia spectrum disorders: a dissociation between dorsolateral and orbitofrontal functioning. Schizophr Res. 2005;77:279–88.

    PubMed  Google Scholar 

  81. Wilder KE, Weinberger DR, Goldberg TE. Operant conditioning and the orbitofrontal cortex in schizophrenic patients: unexpected evidence for intact functioning. Schizophr Res. 1998;30:169–74.

    CAS  PubMed  Google Scholar 

  82. Li X, Lu Z, D’Argembeau A, Ng M, Bechara A. The Iowa Gambling Task in fMRI images. Hum Brain Mapp. 2009;31:410–23.

    Google Scholar 

  83. Nakamura M, Nestor PG, Levitt JJ, Cohen AS, Kawashima T, Shenton ME, McCarley RW. Orbitofrontal volume deficit in schizophrenia and thought disorder. Brain. 2008;131(Pt 1):180–95.

    PubMed Central  PubMed  Google Scholar 

  84. Fellows LK, Farah MJ. The role of ventromedial prefrontal cortex in decision making: judgment under uncertainty or judgment per se? Cereb Cortex. 2007;17:2669–74.

    PubMed  Google Scholar 

  85. Strauss GP, Robinson BM, Waltz JA, Frank MJ, Kasanova Z, Herbener ES, et al. Patients with schizophrenia demonstrate inconsistent preference judgments for affective and nonaffective stimuli. Schizophr Bull. 2011;37:1295–304.

    PubMed  Google Scholar 

  86. Bornovalova MA, Daughters SB, Hernandez GD, Richards JB, Lejuez CW. Differences in impulsivity and risk-taking propensity between primary users of crack cocaine and primary users of heroin in a residential substance-use program. Exp Clin Psychopharmacol. 2005;13:311–8.

    PubMed  Google Scholar 

  87. Kirby K, Petry N. Heroin and cocaine abusers of higher discount rates for delayed rewards than alcoholics or non-drug-using controls. Addiction. 2004;99:461–71.

    PubMed  Google Scholar 

  88. Heerey EA, Matveeva TM, Gold JM. Imagining the future: degraded representations of future rewards and events in schizophrenia. J Abnorm Psychol. 2011;120(2):483–9.

    PubMed Central  PubMed  Google Scholar 

  89. Heerey EA, Robinson BM, McMahon RP, Gold JM. Delay discounting in schizophrenia. Neuropsychiatry. 2007;12(3):213–21.

    Google Scholar 

  90. Avsar KB, Weller RE, Cox JE, Reid MA, White DM, Lahti AC. An fMRI investigation of delay discounting in patients with schizophrenia. Brain Behav. 2013;3:384–401.

    PubMed Central  PubMed  Google Scholar 

  91. Gard DE, Cooper S, Fisher M, Genevsky A, Mikels JA, Vinogradov S. Evidence for an emotion maintenance deficit in schizophrenia. Psychiatry Res. 2011;187(1–2):24–9.

    PubMed Central  PubMed  Google Scholar 

  92. Kring AM, Germans Gard M, Gard DE. Emotion deficits in schizophrenia: timing matters. J Abnorm Psychol. 2011;120(1):79–87.

    PubMed  Google Scholar 

  93. Heerey EA, Gold JM. Patients with schizophrenia demonstrate dissociation between affective experience and motivated behavior. J Abnorm Psychol. 2007;116:268–78.

    PubMed  Google Scholar 

  94. Cohen JD, McClure SM, Yu AJ. Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philos Trans R Soc Lond B Biol Sci. 2007;362:933–42.

    PubMed  Google Scholar 

  95. Gittins JC, Jones DM. A dynamic allocation index for the sequential design of experiments. In: Gans J, editor. Progress in statistics. Amsterdam: North-Holland; 1974. p. 241–66.

    Google Scholar 

  96. Graybiel AM. Habits, rituals, and the evaluative brain. Annu Rev Neurosci. 2008;31:359–87.

    CAS  PubMed  Google Scholar 

  97. Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ. Cortical substrates for exploratory decisions in humans. Nature. 2006;441:876–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Sutton RS, Barto AG. Reinforcement learning: an introduction. Cambridge, MA: MIT Press; 1998.

    Google Scholar 

  99. Badre D, Doll BB, Long NM, Frank MJ. Rostrolateral prefrontal cortex and individual differences in uncertainty-driven exploration. Neuron. 2012;73:595–607.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Frank MJ, Doll BB, Oas-Terpstra J, Moreno F. Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. Nat Neurosci. 2009;12:1062–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Yu A, Dayan P. Uncertainty, neuromodulation and attention. Neuron. 2005;46:681–92.

    CAS  PubMed  Google Scholar 

  102. Usher M, Cohen JD, Rajkowski J, Aston-Jones G. The role of the locus coeruleus in the regulation of cognitive performance. Science. 1999;283:549–54.

    CAS  PubMed  Google Scholar 

  103. Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus–norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci. 2005;28:403–50.

    CAS  PubMed  Google Scholar 

  104. Moustafa AA, Cohen MX, Sherman SJ, Frank MJ. A role for dopamine in temporal decision making and reward maximization in parkinsonism. J Neurosci. 2008;28:12294–304.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Kasanova Z, Waltz JA, Strauss GP, Frank MJ, Gold JM. Optimizing vs. matching: response strategy in a probabilistic learning task is associated with negative symptoms of schizophrenia. Schizophr Res. 2011;127:215–22.

    PubMed Central  PubMed  Google Scholar 

  106. Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, et al. Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci. 2002;22:3708–19.

    CAS  PubMed  Google Scholar 

  107. Murray GK, Corlett PR, Clark L, Pessiglione M, Blackwell AD, Honey G, et al. Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Mol Psychiatry. 2008;13:67–76.

    Google Scholar 

  108. Dolls ET, Loh M, Deco G, Winterer G. Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat Rev Neurosci. 2008;9:696–709.

    Google Scholar 

  109. Huys QJ, Dayan P. A Bayesian formulation of behavioral control. Cognition. 2009;113:314–28.

    PubMed  Google Scholar 

  110. Fervaha G, Foussias G, Agid O, Remington G. Neural substrates underlying effort computation in schizophrenia. Neurosci Biobehav Rev. 2013;37:2649–55.

    Google Scholar 

  111. Hodos W. Progressive ratio as a measure of reward strength. Science. 1961;134:943–4.

    CAS  PubMed  Google Scholar 

  112. Salamone JD, Cousins MS, Bucher S. Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res. 1994;65:221–9.

    CAS  PubMed  Google Scholar 

  113. Wardle MC, Treadway MT, Mayo LM, Zald DH, de Wit H. Amping up effort: effects of d-amphetamine on human effort-based decision-making. J Neurosci. 2011;31:16597–602.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Treadway MT, Buckholtz JW, Cowan RL, Woodward ND, Li R, Ansari MS, Baldwin RM, Schwartzman AN, Kessler RM, Zald DH. Dopaminergic mechanisms of individual differences in human effort-based decision-making. J Neurosci. 2012;32:6170–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Ward RD, Simpson EH, Richards VL, Deo G, Taylor K, Glendinning JI, et al. Dissociation of hedonic reaction to reward and incentive motivation in an animal model of the negative symptoms of schizophrenia. Neuropsychopharmacology. 2012;37:1699–707.

    CAS  PubMed  Google Scholar 

  116. Fusar-Poli P, Meyer-Lindenberg A. Striatal presynaptic dopamine in schizophrenia, part I: meta-analysis of dopamine active transporter (DAT) density. Schizophr Bull. 2013;39:22–32.

    PubMed  Google Scholar 

  117. Fusar-Poli P, Meyer-Lindenberg A. Striatal presynaptic dopamine in schizophrenia, part II: meta-analysis of [(18)F/(11)C]-DOPA PET studies. Schizophrenia Bull. 2013;39:33–42.

    Google Scholar 

  118. Walton ME, Bannerman DM, Rushworth MF. The role of rat medial frontal cortex in effort based decision making. J Neurosci. 2002;22:10996–1003.

    CAS  PubMed  Google Scholar 

  119. Walton ME, et al. Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions. J Neurosci. 2003;23:6475–9.

    CAS  PubMed  Google Scholar 

  120. Walton ME, Groves J, Jennings KA, Croxson PL, Sharp T, Rushworth MF, Bannerman DM. Comparing the role of the anterior cingulate cortex and 6-hydroxydopamine nucleus accumbens lesions on operant effort-based decision making. Eur J Neurosci. 2009;29:1678–91.

    PubMed Central  PubMed  Google Scholar 

  121. Endepols H, Sommer S, Backes H, Wiedermann D, Graf R, Hauber W. Effort-based decision making in the rat: an [18F]fluorodeoxyglucose micro positron emission tomography study. J Neurosci. 2010;30:9708–14.

    CAS  PubMed  Google Scholar 

  122. Croxson PL, Walton ME, O’Reilly JX, Behrens TEJ, Rushworth MFS. Effort based cost-benefit valuation and the human brain. J Neurosci. 2009;29:4531–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Prévost C, Pessiglione M, Météreau E, Cléry-Melin ML, Dreher JC. Separate valuation subsystems for delay and effort decision costs. J Neurosci. 2010;30:14080–90.

    PubMed  Google Scholar 

  124. Benes FM. Emerging principles of altered neural circuitry in schizophrenia. Brain Res Rev. 2000;31:251–69.

    CAS  PubMed  Google Scholar 

  125. Barch DM, Braver TS, Sabb FW, Noll DC. The anterior cingulate cortex and response competition: evidence from an fMRI study of overt verb generation. J Cogn Neurosci. 2000;12:298–305.

    CAS  PubMed  Google Scholar 

  126. Kerns JG, Cohen JD, MacDonald 3rd AW, et al. Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. Am J Psychiatry. 2005;162:1833–9.

    PubMed  Google Scholar 

  127. Hauber W, Sommer S. Prefrontostriatal circuitry regulates effort-related decision making. Cereb Cortex. 2009.

    Google Scholar 

  128. Gold JM, Strauss GP, Waltz JA, Robinson BM, Brown JK, Frank MJ. Negative symptoms of schizophrenia are associated with abnormal effort-cost computations. Biol Psychiatry. 2013;74:130–6.

    PubMed  Google Scholar 

  129. Strauss GP, Keller WR, Buchanan RW, Gold JM, Fischer BA, McMahon RP, Catalano LT, Culbreth AJ, Carpenter WT, Kirkpatrick B. Next-generation negative symptom assessment for clinical trials: validation of the Brief Negative Symptom Scale. Schizophr Res. 2012;142:88–92.

    PubMed Central  PubMed  Google Scholar 

  130. Strauss GP, Hong LE, Keller WR, Buchanan RW, Gold JM, Fischer BA, McMahon RP, Catalano LT, Culbreth AJ, Carpenter WT, Kirkpatrick B. Factor structure of the Brief Negative Symptom Scale. Schizophr Res. 2012;142:96–8.

    PubMed Central  PubMed  Google Scholar 

  131. Fervaha G, Graff-Gurrero A, Zakzanis KK, Foussias G, Agid O, Remington G. Incentive motivation deficits in schizophrenia reflect effort computation impairments during cost-benefit decision-making. J Psychiatr Res. 2013;47:1590–6.

    PubMed  Google Scholar 

  132. Treadway MT, Buckholtz JW, Schwartzman AN, Lambert WE, Zald DH. Worth the ‘EEfRT’? The effort expenditure for rewards task as an objective measure of motivation and anhedonia. PLoS One. 2009;4:e6598.

    PubMed Central  PubMed  Google Scholar 

  133. Gilbert DT, Wilson TD. Prospection: experiencing the future. Science. 2007;317:1351–4.

    CAS  PubMed  Google Scholar 

  134. Robinson MD, Clore GL. Belief and feeling: evidence for an accessibility model of emotional self-report. Psychol Bull. 2002;128:934–60.

    PubMed  Google Scholar 

  135. Ben-Zeev D, McHugo G, Xie H, Dobbins K, Young M. Comparing retrospective reports to real-time/real-place mobile assessments in individuals with schizophrenia and a nonclinical comparison group. Schizophr Bull. 2012;38(3):396–404.

    PubMed  Google Scholar 

  136. Ochsner KN, Bunge SA, Gross JJ, Gabrieli JD. Rethinking feelings: an FMRI study of the cognitive regulation of emotion. J Cogn Neurosci. 2002;14:1215–29.

    PubMed  Google Scholar 

  137. Strauss GP, Kappenman ES, Culbreth AJ, Catalano LT, Lee BG, Gold JM. Emotion regulation abnormalities in schizophrenia: cognitive change strategies fail to decrease the neural response to unpleasant stimuli. Schizophr Bull. 2013;39:872–83.

    PubMed  Google Scholar 

  138. Horan WP, Hajcak G, Wynn JK, Green MF. Impaired emotion regulation in schizophrenia: evidence from event related potentials. Psychol Med. 2013;43:2377–91.

    CAS  PubMed  Google Scholar 

  139. Blanchard JJ, Cohen AS. The structure of negative symptoms within schizophrenia: implications for assessment. Schizophr Bull. 2006;32:238e45.

    Google Scholar 

  140. Horan WP, Kring AM, Gur RE, Reise SP, Blanchard JJ. Development and psychometric validation of the Clinical Assessment Interview for Negative Symptoms (CAINS). Schizophr Res. 2011;132:140–5.

    Google Scholar 

  141. Grant PM, Beck AT. Defeatist beliefs as a mediator of cognitive impairment, negative symptoms, and functioning in schizophrenia. Schizophr Bull. 2009;35:798–806.

    PubMed  Google Scholar 

  142. Beck AT, Rector NA, Stolar NM, Grant PM. Schizophrenia: cognitive theory, research and therapy. New York: Guilford Press; 2009.

    Google Scholar 

  143. Kirkpatrick B, Fenton WS, Carpenter Jr WT, Marder SR. The NIMH-MATRICS consensus statement on negative symptoms. Schizophr Bull. 2006;32(2):214–9.

    PubMed  Google Scholar 

  144. Grant PM, Huh GA, Perivoliotis D, Stolar NM, Beck AT. Randomized trial to evaluate the efficacy of cognitive therapy for low-functioning patients with schizophrenia. Arch Gen Psychiatry. 2012;69(2):121–7.

    PubMed  Google Scholar 

Download references

Acknowledgments

Work on this chapter was supported in part by funding from NIMH to Dr. Strauss: K23MH0925.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory P. Strauss Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Strauss, G.P. (2014). Anhedonia in Schizophrenia: A Deficit in Translating Reward Information into Motivated Behavior. In: Ritsner, M. (eds) Anhedonia: A Comprehensive Handbook Volume II. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8610-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8610-2_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8609-6

  • Online ISBN: 978-94-017-8610-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics