Skip to main content

Neural Basis of Anhedonia Associated with Stress-Induced Eating Disorders

  • Chapter
  • First Online:
Anhedonia: A Comprehensive Handbook Volume I

Abstract

Prolonged or repeated exposure to stressful events has been associated with clinical depression in humans, and also produces depressive-like behaviors in rodent models. Depression has been proposed to be associated with reduced reward-motivated learning. Anhedonia is a main symptom of depression, and the concept of anhedonia refers to a reduction of the ability to experience pleasure, as reflected in a diminished interest in rewarding stimuli and pleasurable events. Many studies have suggested that anhedonia could influence life function and increase vulnerability to the development of psychic disease. A possible dysfunction in the reward and motivation systems has been lately proposed to explain the link between anhedonia and depression. It has been hypothesized that a dysregulated reward system may be associated with the development and maintenance of eating disorders. Indeed, anhedonia is considered as a feature of anorexia nervosa and the most commonly co-morbid disorder in patients with eating disorders. Dysfunctions of the hypothalamic-pituitary-adrenal (HPA) axis activity are most commonly found in patients with eating disorders. We have previously reported that rats with stress experiences in early life show depression-like behaviors including anhedonia, binge-like eating when challenged with metabolic or social stressors, and the HPA axis dysfunctions. In this chapter, neural basis of anhedonia associated with stress-induced disordered eating behaviors in animal models will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

HPA:

Hypothalamic-pituitary-adrenal axis

MS:

Neonatal maternal separation

NH:

Non-handled

NAc:

Nucleus accumbens

PND:

Postnatal day

pSTAT3:

Phosphorylated signal transducer and activator of transcription 3

TH:

Tyrosine hydroxylase

VTA:

Ventral tegmental area

References

  1. Wonderlich SA, Brewerton TD, Jocic Z, et al. The relationship of childhood sexual abuse and eating disorders: a review. J Am Acad Child Adolesc Psychiatry. 1997;36:1107–15.

    CAS  PubMed  Google Scholar 

  2. Fallon BA, Sadik C, Saoud JB, et al. Childhood abuse, family environment, and outcome in bulimia nervosa. J Clin Psychiatry. 1994;55:424–8.

    CAS  PubMed  Google Scholar 

  3. McCarthy MK, Goff DC, Baer L, et al. Dissociation, childhood trauma, and the response to fluoxetine in bulimic patients. Int J Eat Disord. 1994;15:219–26.

    CAS  PubMed  Google Scholar 

  4. Rorty M, Yager J, Rossotto E. Childhood sexual, physical, and psychological abuse and their relationship to comorbid psychopathology in bulimia nervosa. Int J Eat Disord. 1994;16:317–34.

    CAS  PubMed  Google Scholar 

  5. Vize CM, Cooper PJ. Sexual abuse in patients with eating disorder, patients with depression, and normal controls. A comparative study. Br J Psychiatry. 1995;167:80–5.

    CAS  PubMed  Google Scholar 

  6. Matthews K, Wilkinson LS, Robbins TW. Repeated maternal separation of preweanling rats attenuates behavioral responses to primary and conditioned incentives in adulthood. Physiol Behav. 1996;59:99–107.

    CAS  PubMed  Google Scholar 

  7. McIntosh J, Animan H, Merali Z. Short- and long periods of neonatal maternal separation differentially affect anxiety and feeding in adult rats: gender-dependent effects. Brain Res Dev Brain Res. 1999;113:97–106.

    CAS  PubMed  Google Scholar 

  8. Iwasaki S, Inoue K, Kriike N, et al. Effect of maternal separation on feeding behavior of rats in later life. Physiol Behav. 2000;70:551–6.

    CAS  PubMed  Google Scholar 

  9. Ryu V, Yoo SB, Kang DW, et al. Post-weaning isolation promotes food intake and body weight gain in rats that experienced neonatal maternal separation. Brain Res. 2009;1295:127–34.

    CAS  PubMed  Google Scholar 

  10. Yoo SB, Ryu V, Park EY, et al. The arcuate NPY, POMC, and CART expressions responding to food deprivation are exaggerated in young female rats that experienced neonatal maternal separation. Neuropeptides. 2011;45:343–9.

    CAS  PubMed  Google Scholar 

  11. Ryu V, Lee JH, Yoo SB, et al. Sustained hyperphagia in adolescent rats that experienced neonatal maternal separation. Int J Obes. 2008;32:1355–62.

    CAS  Google Scholar 

  12. Hall FS. Social deprivation of neonatal, adolescent, and adult rats has distinct neurochemical and behavioral consequences. Crit Rev Neurobiol. 1998;12:129–62.

    CAS  PubMed  Google Scholar 

  13. Gutman DA, Nemeroff CB. Persistent central nervous system effects of an adverse early environment: clinical and preclinical studies. Physiol Behav. 2003;79:471–8.

    CAS  PubMed  Google Scholar 

  14. Lapiz MD, Fulford A, Muchimapura S, et al. Influence of postweaning social isolation in the rat on brain development, conditioned behavior, and neurotransmission. Neurosci Behav Phys. 2003;33:13–29.

    CAS  Google Scholar 

  15. Fone KCF, Porkess MV. Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev. 2008;32:1087–102.

    CAS  PubMed  Google Scholar 

  16. Robbins TW, Jones GH, Wilkinson LS. Behavioural and neurochemical effects of early social deprivation in the rat. J Psychopharmacol. 1996;10:39–47.

    CAS  PubMed  Google Scholar 

  17. Jahng JW, Yoo SB, Ryu V, et al. Hyperphagia and depression-like behavior by adolescence social isolation in female rats. Int J Develop Neurosci. 2012;30:47–53.

    Google Scholar 

  18. MacMillan HL, Fleming JE, Streiner DL, et al. Childhood abuse and lifetime psychopathology in a community sample. Am J Psychiatry. 2001;158:1878–83.

    CAS  PubMed  Google Scholar 

  19. Kendler KS, Neale MC, Kessler RC, et al. Childhood parental loss and adult psychopathology in women. A twin study perspective. Arch Gen Psychiatry. 1992;49:109–16.

    CAS  PubMed  Google Scholar 

  20. Furukawa TA, Ogura A, Hirai T, et al. Early parental separation experiences among patients with bipolar and major depression: a case–control study. J Affect Dis. 1999;52:85–91.

    CAS  PubMed  Google Scholar 

  21. Agid O, Shapira B, Zislin J, et al. Environment and vulnerability to major psychiatric illness: a case control study of early parental loss in major depression, bipolar disorder and schizophrenia. Mol Psychiatry. 1999;4:163–72.

    CAS  PubMed  Google Scholar 

  22. Heim C, Nemeroff CB. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry. 2001;49:1023–39.

    CAS  PubMed  Google Scholar 

  23. Mullen PE, Martin JL, Anderson JC, et al. The long-term impact of the physical, emotional, and sexual abuse of children: a community study. Child Abuse Negl. 1996;20:7–12.

    CAS  PubMed  Google Scholar 

  24. Stein MB, Walker JR, Anderson G, et al. Childhood physical and sexual abuse in patients with anxiety disorders in a community sample. Am J Psychiatry. 1996;153:275–7.

    CAS  PubMed  Google Scholar 

  25. Felitti VJ, Anda RF, Nordenberg D, et al. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am J Prev Med. 1998;14:245–58.

    CAS  PubMed  Google Scholar 

  26. Kim HJ, Lee JH, Choi SH, et al. Fasting-induced increases of arcuate NPY mRNA and plasma corticosterone are blunted in the rat experienced neonatal maternal separation. Neuropeptides. 2005;39:587–94.

    CAS  PubMed  Google Scholar 

  27. Lee JH, Kim HJ, Kim JG, et al. Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neurosci Res. 2007;58:32–9.

    CAS  PubMed  Google Scholar 

  28. Ladd CO, Huot RL, Thrivikraman KV, et al. Long-term behavioral and neuroendocrine adaptations to adverse early experience. Prog Brain Res. 2000;122:81–103.

    CAS  PubMed  Google Scholar 

  29. Kalinichev M, Easterling KW, Plotsky PM, et al. Long-lasting changes in stress-induced corticosterone response and anxiety-like behaviors as a consequence of neonatal maternal separation in long-Evans rats. Pharm Biochem Behav. 2002;73:131–40.

    CAS  Google Scholar 

  30. Newport JD, Stowe ZN, Nemeroff CB. Parental depression: animal models of an adverse life event. Am J Psychiatry. 2002;159:1265–83.

    PubMed  Google Scholar 

  31. Daniels WM, Pietersen CY, Carstens ME, et al. Maternal separation in rats lead to anxiety-like behavior and a blunted ACTH response and altered neurotransmitter levels in response to a subsequent stressor. Metab Brain Dis. 2004;19:3–14.

    CAS  PubMed  Google Scholar 

  32. Khoury AE, Gruber SHM, Mork A, et al. Adult life behavioral consequences of early maternal separation are alleviated by escitalopram treatment in a rat model of depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2006;30:535–40.

    Google Scholar 

  33. Kelley AE, Schiltz CA, Landry CF. Neural systems recruited by drug- and food-related cues: studies of gene activation in corticolimbic regions. Physiol Behav. 2005;86:11–4.

    CAS  PubMed  Google Scholar 

  34. Paterson NE, Markou A. Animal models and treatments for addiction and depression co-morbidity. Neurotox Res. 2007;11:1–32.

    CAS  PubMed  Google Scholar 

  35. Macht M. How emotions affect eating: a five-way model. Appetite. 2008;50:1–11.

    PubMed  Google Scholar 

  36. Jahng JW, Yoo SB, Kim JY, et al. Increased mesohippocampal dopaminergic activity and improved depression-like behaviors in maternally separated rats following repeated fasting/refeeding cycles. J Obes. 2012; ID497101.

    Google Scholar 

  37. Grissett NI, Norvell NK. Perceived social support, social skills, and quality of relationships in bulimic women. J Consult Clin Psychol. 1992;2:293–9.

    Google Scholar 

  38. Bruce ML, Hoff RA. Social and physical health risk factors for first onset major depressive disorder in a community sample. Soc Psychiatry Psychiatr Epidemiol. 1994;29:165–71.

    CAS  PubMed  Google Scholar 

  39. Darke S, Ross J. Suicide among heroin users: rates, risk factors and methods. Addiction. 2002;97:1383–94.

    PubMed  Google Scholar 

  40. Kendler KS, Bulik CM, Silberg J, et al. Childhood sexual abuse and adult psychiatric and substance use disorders in women. Arch Gen Psychiatry. 2000;57:953–9.

    CAS  PubMed  Google Scholar 

  41. Harmer CJ, Phillips GD. Isolation rearing enhances acquisition in a conditioned inhibition paradigm. Physiol Behav. 1998;65:525–33.

    CAS  PubMed  Google Scholar 

  42. Wongwitdecha N, Marsden CA. Effects of social isolation rearing on learning in the Morris water maze. Brain Res. 1996;715:119–24.

    CAS  PubMed  Google Scholar 

  43. Hall FS, Humby T, Wilkinson LS, et al. The effects of isolation-rearing on preference by rats for a novel environment. Physiol Behav. 1997;62:299–303.

    CAS  PubMed  Google Scholar 

  44. Hellemans KG, Benge LC, Olmstead MC. Adolescent enrichment partially reverses the social isolation syndrome. Dev Brain Res. 2004;150:103–15.

    CAS  Google Scholar 

  45. Weiss IC, Pryce CR, Jongen-Relo AL, et al. Effect of social isolation on stress-induced behavioral and neuroendocrine state in the rat. Behav Brain Res. 2004;152:279–95.

    CAS  PubMed  Google Scholar 

  46. Wright IK, Upton N, Marsden CA. Resocialisation of isolation-rared rats does not alter their anxiogenic profile on the elevated X-maze model of anxiety. Physiol Behav. 1991;50:1129–32.

    CAS  PubMed  Google Scholar 

  47. Potegal M, Einon D. Aggressive behaviors in adult rats deprived of playfighting experience as juveniles. Dev Psychobiol. 1989;22:159–72.

    CAS  PubMed  Google Scholar 

  48. Ding Y, Kang L, Li B, et al. Enhanced cocaine self-administration in adult rats with adolescent isolation experience. Pharmacol Biochem Behav. 2005;82:673–7.

    CAS  Google Scholar 

  49. Grilo CM, White MA, Masheb RM. DSM-IV psychiatric disorder comorbidity and its correlates in binge eating disorder. Int J Eat Disord. 2009;42:228–34.

    PubMed Central  PubMed  Google Scholar 

  50. Javaras KN, Pope HG, Lalonde JK, et al. Co-occurrence of binge eating disorder with psychiatric and mental disorders. J Clin Psychiatry. 2008;69:266–73.

    PubMed  Google Scholar 

  51. Tidey JW, Miczek KA. Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain Res. 1996;721:140–9.

    CAS  PubMed  Google Scholar 

  52. Lowry CA, Hale MW, Plant A, et al. Fluoxetine inhibits corticotropin-releasing factor (CRF)-induced behavioural responses in rats. Stress. 2009;12:225–39.

    CAS  PubMed  Google Scholar 

  53. Paul ED, Hale MW, Lukkes JL, et al. Repeated social defeat increases reactive emotional coping behavior and alters functional responses in serotonergic neurons in the rat dorsal raphe nucleus. Physiol Behav. 2011;104:272–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Dube L, LeBel JL, Lu J. Affect asymmetry and comfort food consumption. Physiol Behav. 2005;86:559–67.

    CAS  PubMed  Google Scholar 

  55. Ulrich-Lai YM, Ostrander MM, Thomas IM, et al. Daily limited access to sweetened drink attenuates hypothalamic-pituitary-adrenocortical axis stress responses. Endocrinology. 2007;148:1823–34.

    CAS  PubMed  Google Scholar 

  56. Heim C, Newport DJ, Heit S, et al. Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. JAMA. 2000;284:593–7.

    Google Scholar 

  57. Koo-Loeb JH, Costello N, Light KC, et al. Women with eating disorder tendencies display altered cardiovascular, neuroendocrine, and physiological profiles. Psychosom Med. 2000;62:539–48.

    CAS  PubMed  Google Scholar 

  58. Gluck ME, Geliebter A, Lorence M. Cortisol stress response is positively correlated with central obesity in obese women with binge eating disorder (BED) before and after cognitive-behavioral treatment. Ann N Y Acad Sci. 2004;1032:202–7.

    CAS  PubMed  Google Scholar 

  59. Katz RJ. Animal model of depression: pharmacological sensitivity of a hedonic deficit. Pharmacol Biochem Behav. 1982;16:965–8.

    CAS  PubMed  Google Scholar 

  60. Hill MN, Hellemans KGC, Verma P, et al. Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev. 2012;36:2085–117.

    CAS  PubMed  Google Scholar 

  61. Willner P, Moreau JL, Nielsen CK, et al. Decreased hedonic responsiveness following chronic mild stress is not secondary to loss of body weight. Physiol Behav. 1996;60:129–34.

    CAS  PubMed  Google Scholar 

  62. Lin YH, Liu AH, Xu Y, et al. Effect of chronic unpredictable mild stress on brain-pancreas relative protein in rat brain and pancreas. Behav Brain Res. 2005;165:63–71.

    CAS  PubMed  Google Scholar 

  63. Lucca G, Comim CM, Valvassori SS, et al. Chronic mild stress paradigm reduces sweet food intake in rats without affecting brain derived neurotrophic factor protein levels. Curr Neurovasc Res. 2008;5:207–13.

    CAS  PubMed  Google Scholar 

  64. Tacchi R, Ferrari A, Loche A, et al. Sucrose intake: increase in non-stressed rats and reduction in chronically stressed rats are both prevented by the gamma-hydroxybutyrate (GHB) analogue, GET7. Pharmacol Res. 2008;57:464–8.

    CAS  PubMed  Google Scholar 

  65. American Psychiatric Association and American Psychiatric Association Task Force on DSM-IV; 2000.

    Google Scholar 

  66. Willner P. Chronic mild stress (CMS) revisited: consistency and behavioural neurobiological concordance in the effects of CMS. Neuropsychobiology. 2005;52:90–110.

    CAS  PubMed  Google Scholar 

  67. Oliver G, Wardle J, Gibson EL. Stress and food choice: a laboratory study. Psychosom Med. 2000;62:853–65.

    CAS  PubMed  Google Scholar 

  68. Zellner DA, Loaiza S, Gonzalez Z, et al. Food selection changes under stress. Physiol Behav. 2006;87:789–93.

    CAS  PubMed  Google Scholar 

  69. Pollard TM, Steptoe A, Canaan L, et al. Effects of academic examination stress on eating behavior and blood lipid levels. Int J Behav Med. 1995;2:299–320.

    CAS  PubMed  Google Scholar 

  70. Adam TC, Epel ES. Stress, eating and the reward system. Physiol Behav. 2007;91:449–58.

    CAS  PubMed  Google Scholar 

  71. Armario A. The hypothalamic-pituitary-adrenal axis: what can it tell us about stressors? CNS Neurol Disord Drug Targets. 2006;5:485–501.

    PubMed  Google Scholar 

  72. Harris RB, Palmondon J, Leshin S, et al. Chronic disruption of body weight but not of stress peptides or receptors in rats exposed to repeated restraint stress. Horm Behav. 2006;49:615–25.

    CAS  PubMed  Google Scholar 

  73. Makino S, Asaba K, Nishiyama M, et al. Decreased type 2 corticotropin-releasing hormone receptor mRNA expression in ventromedial hypothalamus during repeated immobilization stress. Neuroendocrinology. 1999;70:160–7.

    CAS  PubMed  Google Scholar 

  74. Harris RB, Zhou J, Youngblood BD, et al. Effect of repeated stress on body weight and body composition of rats fed low- and high-fat diets. Am J Physiol Regul Integr Comp Physiol. 1998;275:R1928–38.

    CAS  Google Scholar 

  75. Miragaya JR, Harris RB. Antagonism of corticotrophin-releasing factor receptors in the fourth ventricle modifies responses to mild but not restraint stress. Am J Physiol Regul Integr Comp Physiol. 2008;295:R404–16.

    CAS  PubMed  Google Scholar 

  76. Ryu V, Yoo SB, Kim BT, et al. Experience of neonatal maternal separation may lead to a long-term modulation in the neuronal activity of nucleus accumbens in the offspring. Exp Neurobiol. 2009;18:88–96.

    Google Scholar 

  77. Harlow HF, Suomi SJ. Production of depressive behaviors in young monkeys. J Autism Childh Schizophr. 1971;1:246–55.

    CAS  Google Scholar 

  78. Harlow HF, Suomi SJ. Induced depression in monkeys. Behav Biol. 1974;12:273–96.

    CAS  PubMed  Google Scholar 

  79. Paul IA, English JA, Halaris A. Sucrose and quinine intake by maternally-deprived and control rhesus monkeys. Behav Brain Res. 2000;112:127–34.

    CAS  PubMed  Google Scholar 

  80. Yoo SB, Kim BT, Kim JY, et al. Adolescence fluoxetine increases serotonergic activity in the raphe-hippocampus axis and improves depression-like behaviors in female rats that experienced neonatal maternal separation. Psychoneuroendocrinology. 2013;38:777–88.

    CAS  PubMed  Google Scholar 

  81. Amsterdam JD, Settle RG, Doty RL, et al. Taste and smell perception in depression. Biol Psychiatry. 1987;22:1481–5.

    CAS  PubMed  Google Scholar 

  82. Steiner JE, Lidar-Lifschitz D, Perl E. Taste and odor: reactivity in depressive disorders, a multidisciplinary approach. Percept Mot Skills. 1993;77:1331–46.

    CAS  PubMed  Google Scholar 

  83. Arbisi PA, Levine AS, Nerenberg J, et al. Seasonal alteration in taste detection and recognition threshold in seasonal affective disorder: the proximate source of carbohydrate craving. Psychiatry Res. 1996;59:171–82.

    CAS  PubMed  Google Scholar 

  84. Christensen L. The effect of carbohydrates on affect. Nutrition. 1997;13:503–14.

    CAS  PubMed  Google Scholar 

  85. Willner P, Benton D, Brown E, et al. “Depression” increases “craving” for sweet rewards in animal and human models of depression and craving. Psychopharmacology (Berl). 1998;136:272–83.

    CAS  Google Scholar 

  86. Bruera E, Carraro S, Roca E, et al. Association between malnutrition and caloric intake, emesis, psychological depression, glucose taste, and tumor mass. Cancer Treat Rep. 1984;68:873–6.

    CAS  PubMed  Google Scholar 

  87. Potts AJ, Bennett PJ, Kennedy SH, et al. Depressive symptoms and alterations in sucrose taste perception: cognitive bias or a true change in sensitivity? Can J Exp Psychol. 1997;51:57–60.

    CAS  PubMed  Google Scholar 

  88. Di Chiara G, Loddo P, Tanda G. Reciprocal changes in prefrontal and limbic dopamine responsiveness to aversive and rewarding stimuli after chronic mild stress: implications for the psychobiology of depression. Biol Psychiatry. 1999;46:1624–33.

    PubMed  Google Scholar 

  89. Yadid G, Overstreet DH, Zangen A. Limbic dopaminergic adaptation to a stressful stimulus in a rat model of depression. Brain Res. 2001;896:43–7.

    CAS  PubMed  Google Scholar 

  90. Bassareo V, De Luca MA, Di Chiara G. Differential expression of motivational stimulus properties by dopamine in nucleus accumbens shell versus core and prefrontal cortex. JNeurosci. 2002;22:4709–19.

    CAS  Google Scholar 

  91. Kirkham TC, Williams CM, Fezza F, et al. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol. 2002;136:550–7.

    CAS  PubMed  Google Scholar 

  92. Kelley AE, Baldo BA, Pratt WE, et al. Corticostriatal hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav. 2005;86:773–95.

    CAS  PubMed  Google Scholar 

  93. Di Chiara G, Bassare V. Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharmacol. 2007;7:69–76.

    PubMed  Google Scholar 

  94. Sahr AE, Sindelar DK, Alexander-Chacko JT, et al. Activation of mesolibic dopamine neurons during novel and daily limited access to palatable food is blocked by the opioid antagonist LY255582. Am J Physiol Regul Integr Comp Physiol. 2008;295:R463–71.

    CAS  PubMed  Google Scholar 

  95. Yamamoto T. Central mechanisms of roles of taste in reward and eating. Act Physiol Hung. 2008;95:165–86.

    CAS  Google Scholar 

  96. Moreau JL, Scherschlicht R, Jenck F, et al. Chronic mild stress-induced anhedonia model of depression; sleep abnormalities and curative effects of electroshock treatment. Behav Pharmacol. 1995;6:682–7.

    PubMed  Google Scholar 

  97. Gorwood P. Neurobiological mechanisms of anhedonia. Dial Clin Neurosci. 2008;10:291–9.

    Google Scholar 

  98. Lucasa LR, Wang CJ, McCall TJ, et al. Effects of immobilization stress on neurochemical markers in the motivational system of the male rat. Brain Res. 2007;1155:108–15.

    Google Scholar 

  99. Cardinal RN, Cheung THC. Nucleus accumbens core lesions retard instrumental learning and performance with delayed reinforcement in the rat. BMC Neurosci. 2005;6:9.

    PubMed Central  PubMed  Google Scholar 

  100. Konsman JP, Blomqvist A. Forebrain patterns of c-Fos and FosB induction during cancer-associated anorexia-cachexia in rat. Eur J Neurosci. 2005;21:2752–66.

    PubMed  Google Scholar 

  101. Yamamoto T. Brain regions responsible for the expression of conditioned taste aversion in rats. Chem Sens. 2007;32:105–9.

    CAS  Google Scholar 

  102. Koob GF, Bloom FE. Cellular and molecular mechanisms of drug dependence. Science. 1988;242:715–23.

    CAS  PubMed  Google Scholar 

  103. Meredith GE, Pennartz CM, Groenewegen HJ. The cellular framework for chemical signalling in the nucleus accumbens. Prog Brain Res. 1993;99:3–24.

    CAS  PubMed  Google Scholar 

  104. Willner P, Muscat R, Papp M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev. 1992;16:525–34.

    CAS  PubMed  Google Scholar 

  105. Jahng JW, Ryu V, Yoo SB, et al. Mesolimbic dopaminergic activity responding to acute stress is blunted in adolescent rats that experienced neonatal maternal separation. Neuroscience. 2010;171:144–52.

    CAS  PubMed  Google Scholar 

  106. Di Chiara G, Tanda G. Blunting of reactivity of dopamine transmission to palatable food: a biochemical marker of anhedonia in the CMS model? Psychopharmacology (Berl). 1997;134:351–3.

    Google Scholar 

  107. Scheggi S, Leggio B, Masi F, et al. Selective modifications in the nucleus accumbens of dopamine synaptic transmission in rats exposed to chronic stress. J Neurochem. 2002;83:895–903.

    CAS  PubMed  Google Scholar 

  108. Perrotti LI, Hadeishi Y, Ulery PG, et al. Induction of delta FosB in reward-related brain structures after chronic stress. J Neurosci. 2004;24:10594–602.

    CAS  PubMed  Google Scholar 

  109. Kalivas PW, Duffy P. Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress. Brain Res. 1995;675:325–8.

    CAS  PubMed  Google Scholar 

  110. Saal D, Dong Y, Bonci A, et al. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron. 2003;37:577–82.

    CAS  PubMed  Google Scholar 

  111. Dalla C, Antoniou K, Drossopoulou G, et al. Chronic mild stress impact: are females more vulnerable? Neuroscience. 2005;135:703–14.

    CAS  PubMed  Google Scholar 

  112. Dalla C, Antoniou K, Kokras N, et al. Sex differences in the effects of two stress paradigms on dopaminergic neurotransmission. Physiol Behav. 2008;93:595–605.

    CAS  PubMed  Google Scholar 

  113. Tannenbaum B, Anisman H. Impact of chronic intermittent challenges in stressor-susceptible and resilient strains of mice. Biol Psychiatry. 2003;53:292–303.

    PubMed  Google Scholar 

  114. Johnson BN, Yamamoto BK. Chronic unpredictable stress augments +3,4-methylenedioxymethamphetamine-induced monoamine depletions: the role of corticosterone. Neuroscience. 2009;159:1233–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Rasheed N, Tyagi E, Ahmad A, et al. Involvement of monoamines and proinflammatory cytokines in mediating the anti-stress effects of Panax quinquefolium. J Ethnopharmacol. 2008;117:257–62.

    CAS  PubMed  Google Scholar 

  116. Ahmad A, Rasheed N, Banu N, et al. Alterations in monoamine levels and oxidative systems in frontal cortex, striatum, and hippocampus of the rat brain during chronic unpredictable stress. Stress. 2010;13:355–64.

    PubMed  Google Scholar 

  117. Marti O, Gavalda A, Jolin T, et al. Effect of regularity of exposure to chronic immobilization stress on the circadian pattern of pituitary adrenal hormones, growth hormone, and thyroid stimulating hormone in the adult male rat. Psychoneuroendocrinology. 1993;18:67–77.

    CAS  PubMed  Google Scholar 

  118. Ottenweller JE, Servatius RJ, Natelson BH. Repeated stress persistently elevates morning, but not evening, plasma corticosterone levels in male rats. Physiol Behav. 1994;55:337–40.

    CAS  PubMed  Google Scholar 

  119. Oswald LM, Wong DF, McCaul M, et al. Relationships among ventral striatal dopamine release, cortisol secretion, and subjective responses to amphetamine. Neuropsychopharmacology. 2005;30:821–32.

    CAS  PubMed  Google Scholar 

  120. Wand GS, Oswald LM, McCaul ME, et al. Association of amphetamine-induced striatal dopamine release and cortisol responses to psychological stress. Neuropsychopharmacology. 2007;32:2310–20.

    CAS  PubMed  Google Scholar 

  121. Ladd CO, Owens MJ, Nemeroff CB. Persistent changes in corticotropin-releasing factor neuronal systems induced by maternal deprivation. Endocrinology. 1996;137:1212–18.

    CAS  PubMed  Google Scholar 

  122. Vazquez DM, Lopez JF, Van Hoers H, et al. Maternal deprivation regulates serotonin 1A and 2A receptors in the infant rat. Brain Res. 2000;855:76–82.

    CAS  PubMed  Google Scholar 

  123. Noh SJ, Kang DW, Yoo SB, et al. Stress-responsive hypothalamic-nucleus accumbens regulation may vary depending on stressors. Ind J Exp Biol. 2012;50:447–54.

    Google Scholar 

  124. Arborelius L, Owens MJ, Plotsky PM, et al. The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol. 1999;160:1–12.

    CAS  PubMed  Google Scholar 

  125. Putignano P, Dubini A, Toja P, et al. Salivary cortisol measurement in normal-weight, obese and anorexic women: comparison with plasma cortisol. Eur J Endocrinol. 2001;145:165–71.

    CAS  PubMed  Google Scholar 

  126. Goossens L, Braet C, Van Vlierberghe L, et al. Loss of control over eating in overweight youngsters: the role of anxiety, depression and emotional eating. Eur Eat Disord Rev. 2009;17:68–78.

    PubMed  Google Scholar 

  127. Tichomirowa MA, Keck ME, Schneider HJ, et al. Endocrine disturbances in depression. J Endocrinol Invest. 2005;28:89–99.

    CAS  PubMed  Google Scholar 

  128. Albenidou-Farmaki E, Poulopoulos AK, Epivatianos A, et al. Increased anxiety level and high salivary and serum cortisol concentrations in patients with recurrent aphthous stomatitis. Tohoku J Exp Med. 2008;214:291–6.

    Google Scholar 

  129. Plotsky PM, Meaney MJ. Early, postnatal experience alters hypothalamic corticotrophin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Mol Brain Res. 1993;18:195–200.

    CAS  PubMed  Google Scholar 

  130. Suchecki D, Tufik S. Long-term effects of maternal deprivation on the corticosterone response to stress in rats. Am J Physiol. 1997;273:R1332–8.

    CAS  PubMed  Google Scholar 

  131. Van Oers HJ, de Kloet ER, Levins S. Early vs. late maternal deprivation differentially alters the endocrine and hypothalamic responses to stress. Brain Res Dev Brain Res. 1998;111:245–52.

    PubMed  Google Scholar 

  132. Liu D, Caldji C, Sharma S, et al. Influence of neonatal rearing conditions on stress-induced adrenocorticotropin responses and norepinepherine release in the hypothalamic paraventricular nucleus. J Neuroendocrinol. 2000;12:5–12.

    PubMed  Google Scholar 

  133. Axelrod J, Reisine TD. Stress hormones: their interaction and regulation. Science. 1984;224:452–9.

    CAS  PubMed  Google Scholar 

  134. Cavagnini F, Croci M, Putignano P, et al. Glucocorticoids and neuroendocrine function. Int J Obes. 2000;24:S77–9.

    CAS  Google Scholar 

  135. Zakrzewska KE, Cusin I, Stricker-Krongrad A, et al. Induction of obesity and hyperleptinemia by central glucocorticoid infusion in the rat. Diabetes. 1999;48:365–70.

    CAS  PubMed  Google Scholar 

  136. Jahng JW, Kim NY, Yoo SB, et al. Dexamethasone reduces food intake, weight gain and the hypothalamic 5-HT concentration and increases plasma leptin in rats. Eur J Pharmacol. 2008;581:64–70.

    CAS  PubMed  Google Scholar 

  137. Casarotto PC, Andreatini R. Repeated paroxetine treatment reverses anhedonia induced in rats by chronic mild stress or dexamethasone. Eur Neuropsychopharmacol. 2007;17:735–42.

    CAS  PubMed  Google Scholar 

  138. Velkoska E, Morris MJ, Burns P, et al. Leptin reduces food intake but does not alter weight regain following food deprivation in the rat. Int J Obes Relat Metab Disord. 2003;27:48–54.

    CAS  PubMed  Google Scholar 

  139. Caldefie-Chezet F, Moinard C, Minet-Quinard R, et al. Dexamethasone treatment induces long-lasting hyperleptinemia and anorexia in old rats. Metabolism. 2001;50:1054–8.

    CAS  PubMed  Google Scholar 

  140. Caldefie-Chezet F, Poulin A, Enreille-Leger A, et al. Troglitazone reduces leptinemia during experimental dexamethasone-induced stress. Horm Metab Res. 2005;37:164–71.

    CAS  PubMed  Google Scholar 

  141. Hernandez C, Simo R, Chacon P, et al. Influence of surgical stress and parental nutrition on serum leptin concentration. Clin Nutr. 2000;19:61–4.

    CAS  PubMed  Google Scholar 

  142. Konishi N, Otaka M, Odashima M, et al. Systemic stress increases serum leptin level. J Gastroenterol Hepatol. 2006;21:1099–102.

    CAS  PubMed  Google Scholar 

  143. Wallace AM, Sattar N, Mcmillan DC. The co-ordinated cytokine/hormone response to acute injury incorporates leptin. Cytokine. 2000;12:1042–5.

    CAS  PubMed  Google Scholar 

  144. Lee MJ, Wang Y, Ricci MR, et al. Acute and chronic regulation of leptin synthesis, storage and secretion by insulin and dexamethasone in human adipose tissue. Am J Physiol Endocrinol Metab. 2007;292:E858–64.

    CAS  PubMed  Google Scholar 

  145. Campfield LA, Smith FJ, Guisez Y, et al. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science. 1995;269:546–9.

    CAS  PubMed  Google Scholar 

  146. Grill HJ, Schwartz MW, Kaplan JM, et al. Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology. 2002;143:239–46.

    CAS  PubMed  Google Scholar 

  147. Pelleymounter MA, Cullen MJ, Baker MB, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science. 1995;269:540–3.

    CAS  PubMed  Google Scholar 

  148. Hommel JD, Trinko R, Sears RM, et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron. 2006;51:801–10.

    CAS  PubMed  Google Scholar 

  149. Figlewicz DP, Evans SB, Murphy J, et al. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res. 2003;964:107–15.

    CAS  PubMed  Google Scholar 

  150. Leshan RL, Opland DM, Louis GW, et al. Ventral tegmental area leptin receptor neurons specifically project to and regulate cocaine- and amphetamine-regulated transcript neurons of the extended central amygdala. J Neurosci. 2010;30:5713–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Fulton S, Pissios P, Manchon RP, et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron. 2006;51:811–22.

    CAS  PubMed  Google Scholar 

  152. Morton GJ, Blevins JE, Kim F, et al. The action of leptin in the ventral tegmental area to decrease food intake is dependent on Jak-2 signaling. Am J Physiol Endocrinol Metab. 2009;297:E202–10.

    CAS  PubMed  Google Scholar 

  153. Krugel U, Schraft T, Kittner H, et al. Basal and feeding-evoked dopamine release in the rat nucleus accumbens is depressed by leptin. Eur J Pharmacol. 2003;482:185–7.

    PubMed  Google Scholar 

  154. Figlewicz DP, Bennett JL, Naleid AM, et al. Intraventricular insulin and leptin decrease sucrose self-administration in rats. Physiol Behav. 2006;89:611–16.

    CAS  PubMed  Google Scholar 

  155. Thanos PK, Michaelides M, Piyis YK, et al. Food restriction markedly increases dopamine D2 receptor (D2R) in a rat model of obesity as assessed with in-vivo muPET imaging ([11C] raclopride) and in-vitro ([3H] spiperone) autoradiography. Synapse. 2008;62:50–61.

    CAS  PubMed  Google Scholar 

  156. Collin M, Hakansson-Ovesjo M-L, Misane I, et al. Decreased 5-HT transporter mRNA in neurons of the dorsal raphe nucleus and behavioral depression in the obese leptin-deficient ob/ob mouse. Mol Brain Res. 2000;81:51–61.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (2013R1A1A3A04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Won Jahng Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jahng, J.W. (2014). Neural Basis of Anhedonia Associated with Stress-Induced Eating Disorders. In: Ritsner, M. (eds) Anhedonia: A Comprehensive Handbook Volume I. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8591-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8591-4_13

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8590-7

  • Online ISBN: 978-94-017-8591-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics