Skip to main content

Mid-infrared Laser Based Gas Sensor Technologies for Environmental Monitoring, Medical Diagnostics, Industrial and Security Applications

  • Conference paper
  • First Online:
Terahertz and Mid Infrared Radiation: Detection of Explosives and CBRN (Using Terahertz)

Abstract

Recent advances in the development of compact sensors based on mid-infrared continuous wave (CW), thermoelectrically cooled (TEC) and room temperature operated quantum cascade lasers (QCLs) for the detection, quantification and monitoring of trace gas species and their applications in environmental and industrial process analysis will be reported. These sensors employ a 2f wavelength modulation (WM) technique based on quartz enhanced photoacoustic spectroscopy (QEPAS) that achieves detection sensitivity at the ppbv and sub ppbv concentration levels. The merits of QEPAS include an ultra-compact, rugged sensing module, with wide dynamic range and immunity to environmental acoustic noise. QCLs are convenient QEPAS excitation sources that permit the targeting of strong fundamental rotational-vibrational transitions which are one to two orders of magnitude more intense in the mid-infrared than overtone transitions in the near infrared spectral region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faist J (2013) Quantum cascade lasers. Oxford University Press, Oxford. ISBN 13: 978-0198528241

    Book  Google Scholar 

  2. Capasso F (2010) High-performance midinfrared quantum cascade lasers. SPIE Opt Eng 49:111102

    Article  ADS  Google Scholar 

  3. Razeghi M, Bai Y, Slivkin S, Davish SR (2010) High-performance InP-based midinfrared quantum cascade lasers at Northwestern University. SPIE Opt Eng 49:111103-4

    ADS  Google Scholar 

  4. Lyakh A, Maulini R, Tsekoun AG, Patel CK (2010) Progress in high-performance quantum cascade lasers. SPIE Opt Eng 49:111105

    Article  ADS  Google Scholar 

  5. Razeghi M (2009) High-performance InP-based Mid-IR quantum cascade lasers. IEEE J Sel Top Quantum Elect 15:941–951

    Article  Google Scholar 

  6. Le QY, Bai Y, Bandyopadhyay N, Slivken S, Razeghi M (2010) Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output. Appl Phys Lett 97:231119-1

    Article  ADS  Google Scholar 

  7. Dong L, Spagnolo V, Lewicki R, Tittel FK (2011) Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor. Opt Express 19:24037–24045

    Article  ADS  Google Scholar 

  8. Spagnolo V, Kosterev AA, Dong L, Lewicki R, Tittel FK (2010) NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser. Appl Phys B 100:125–130

    Article  ADS  Google Scholar 

  9. Kosterev AA, Bakhirkin YA, Curl RF, Tittel FK (2002) Quartz-enhanced photoacoustic spectroscopy. Opt Lett 27:1902–1904

    Article  ADS  Google Scholar 

  10. Kosterev AA, Tittel FK, Serebryakov D, Malinovsky A, Morozov A (2005) Applications of quartz tuning fork in spectroscopic gas sensing. Rev Sci Instrum 76:043105

    Article  ADS  Google Scholar 

  11. Curl RF, Capasso F, Gmachl C, Kosterev AA, McManus B, Lewicki R, Pusharsky M, Wysocki G, Tittel FK (2010) Quantum cascade lasers in chemical physics. Chem Phys Lett Frontiers Article 487:1–18

    Article  ADS  Google Scholar 

  12. Dong L, Kosterev AA, Thomazy D, Tittel FK (2010) QEPAS spectrophones: design, optimization, and performance. Appl Phys B 100:627–635

    Article  ADS  Google Scholar 

  13. Ma Y, Lewicki R, Razeghi M, Tittel FK (2013) QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL. Opt Express 21:1008–1019

    Article  ADS  Google Scholar 

  14. Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York

    Google Scholar 

  15. Ma Y, Lewicki R, Razeghi M, Tittel FK (2013) QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL. Opt Express 21:1008–1019

    Article  ADS  Google Scholar 

  16. Li J, Parchatka U, Königstedt R, Fischer H (2012) Real-time measurements of atmospheric CO using a continuous-wave room temperature quantum cascade laser based spectrometer. Opt Express 20:7590–7601

    Article  ADS  Google Scholar 

  17. Tao L, Sun K, Amir Khan M, Miller DJ, Zondlo MA (2012) Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser. Opt Express 20:28106–28118

    Article  ADS  Google Scholar 

  18. Kasyutich VL, Holdsworth RJ, Martin PA (2008) Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O and NO. Appl Phys B 92:271–279

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The Rice University group acknowledges financial support from a National Science Foundation (NSF) grant EEC-0540832 entitled “Mid-Infrared Technologies for Health and the Environment (MIRTHE)”, a NSF-ANR award for international collaboration in chemistry “Next generation of Compact Infrared Laser based Sensor for environmental monitoring (NexCILAS)” and grant C-0586 from the Robert Welch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank K. Tittel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tittel, F.K. et al. (2014). Mid-infrared Laser Based Gas Sensor Technologies for Environmental Monitoring, Medical Diagnostics, Industrial and Security Applications. In: Pereira, M., Shulika, O. (eds) Terahertz and Mid Infrared Radiation: Detection of Explosives and CBRN (Using Terahertz). NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8572-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8572-3_21

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8571-6

  • Online ISBN: 978-94-017-8572-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics