Skip to main content

High-Resolution THz Spectroscopy of Biomolecules and Bioparticles: Concentration Methods

  • Conference paper
  • First Online:
Terahertz and Mid Infrared Radiation: Detection of Explosives and CBRN (Using Terahertz)

Abstract

During the past several years we have utilized fluidic-chip and waveguide-concentrator technology in combination with high-resolution frequency-domain THz spectroscopy to detect absorption signatures in biomolecules and bioparticles of various types, especially the nucleic acids and bacterial spores. Some of the signatures have been surprisingly narrow (<20 GHz FWHM), leading to the hypothesis that the fluidic chips can enhance certain vibrational resonances because of their concentrating and linearizing effects. For solid or moist bio-samples, circular waveguide coupling allows signature detection of small quantities with some degradation of sensitivity but no loss of resolution. It concentrates the radiation, not the biomaterial. This method was used to demonstrate strong THz signatures in bacterial spores (e.g., Bacillus thuringiensis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Zandt LL, Prohofsky EW, Kohli M (1980) Microwave absorption by double-helical DNA. Int J Quant Chem Quant Biol Symp 7:35–38

    Google Scholar 

  2. Wittlin A, Genzel L, Kremer F, Häseler D, Poglitsh A (1986) Far-infrared spectroscopy on oriented films of dry and hydrated DNA. Phys Rev A 34:493–500

    Article  ADS  Google Scholar 

  3. Van Zandt LL, Saxena VK (1994) Vibrational local modes in DNA polymers. J Biomol Struct Dyn 11:1149

    Article  Google Scholar 

  4. Woolard DL, Kosica T, Rhodes DL, Cui HL, Pastore RA, Jensen JO, Jensen JL, Loerop WR, Jacobsen RH, Mittleman D, Nuss MC (1997) Millimeter wave-induced vibrational modes in DNA as a possible alternative to animal tests to probe for carcinogenic mutations. J Appl Toxicol 17(4):243–246

    Article  Google Scholar 

  5. Verghese S, McIntosh KA, Calawa S, Dinatale WF, Duerr EK, Molvar KA (1998) Generation and detection of coherent terahertz waves using two photomixers. Appl Phys Lett 73:3824

    Article  ADS  Google Scholar 

  6. Bjarnason JE, Brown ER (2005) Sensitivity measurement and analysis of an ErAs:GaAs coherent photomixing transceiver. Appl Phys Lett 87:134105

    Article  ADS  Google Scholar 

  7. Demers JR, Logan RT Jr., Bergeron NJ, Brown ER (2008) A coherent frequency-domain THz spectrometer with a signal-to-noise ratio 60 dB at 1 THz. In: Proceedings of the SPIE, Paper# 6949-8, Orlando, 16–20 March 2008

    Google Scholar 

  8. Brown ER, Bjarnason J, Chan TLJ, Driscoll DC, Hanson M, Gossard AC (2004) Room temperature, THz photomixing sweep oscillator and its application to spectroscopic transmission through organic materials. Rev Sci Inst 75:5333

    Article  ADS  Google Scholar 

  9. Xia D, Brueck SRJ (2005) Fabrication of enclosed nanochannels using silica nanoparticles. J Vac Sci Tech B23:2694–2699

    Article  Google Scholar 

  10. Xia D et al (2008) DNA transport in hierarchically-structured colloidal nanoparticle porous-wall nanochannels. Nano Lett 8:1610–1618

    Article  ADS  Google Scholar 

  11. Brown ER, Mendoza EA, Xia D-Y, Brueck SRJ (2010) Narrow THz spectral signatures through DNA and RNA in nanofluidic channels. IEEE Sensors J 10(755)

    Google Scholar 

  12. Sanger F, Coulson AR, Hong GF, Hill DF, Petersen GB (1982) Nucleotide sequence of bacteriophage λ DNA. J Mol Biol 162(4):729–773

    Article  Google Scholar 

  13. Pozar DM (2005) Microwave engineering, 3rd Ed. Wiley, Hoboken, NJ

    Google Scholar 

  14. Brown ER, Bjarnason JE, Fedor AM, Korter TM (2007) On the strong and narrow absorption signature in lactose at 0.53 THz. Appl Phys Lett 90:061908

    Article  ADS  Google Scholar 

  15. Roggenbuck A, Schmitz H, Deninger A, Camara Mayorga I, Hemberger J, Gusten R, Gruninger M (2010) Coherent, broadband continuous-wave THz spectroscopy on solid-state samples. New J Phys 12:043017

    Article  Google Scholar 

  16. Globus TR, Woolard DL, Khromova T, Crowe TW, Bykhovskaia M, Gelmont BL, Hesler JL, Samuels AC (2003) THz-spectroscopy of biological molecules. J Biol Phys 29:89–100

    Google Scholar 

  17. Brown ER et al (2004) Optical attenuation signatures of Bacillus Subtilis in the THz region. Appl Phys Lett 84(18):3438–3440

    Article  ADS  Google Scholar 

  18. Zhang W, Brown ER, Viveros L, Burris K, Stewart N (2013) Narrow terahertz attenuation signatures in Bacillus thuringiensis. J Biophoton. doi:10.1002/jbio.201300042

  19. Brown ER, Khromova TB, Globus T, Woolard DL, Jensen JO, Majewski A (2006) THz regime attenuation signatures in Bacillus subtilis and a model based on surface polariton effects. IEEE Sens J 6(5):1076–1083

    Article  Google Scholar 

Download references

Acknowledgments

 This material is based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army Research Office under contract numbers W911NF-11-1-0024 and W911NF-11-C-0080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Brown, E.R. et al. (2014). High-Resolution THz Spectroscopy of Biomolecules and Bioparticles: Concentration Methods. In: Pereira, M., Shulika, O. (eds) Terahertz and Mid Infrared Radiation: Detection of Explosives and CBRN (Using Terahertz). NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8572-3_2

Download citation

Publish with us

Policies and ethics