Fruit and Vegetables and Health: An Overview

  • Yves Desjardins


A growing body of evidences suggests that the regular consumption of a diet rich in fruit and vegetables (FAV) reduces the risk of chronic human illnesses and increase lifespan and quality of life. FAV are considered energy poor, are rich sources of minerals, fibers, vitamins and most of all of many phytochemicals belonging to four main classes: polyphenols, terpenoids, sulphur compounds and alkaloids. Polyphenols, and to a certain extent carotenoids and sulphur containing compounds have been shown through epidemiological cohort studies or through mechanistic in vitro or animal studies, to prevent coronary heart diseases, chronic inflammatory diseases, obesity, diabetes, neurodegenerative diseases, cancer, macular degeneration, and many others. Owing to their particular chemical structure, theses phytochemicals display strong antioxidant capacity in vitro. Yet due to their poor bioavailability and their short residence time in the organism, it is more and more admitted that these molecules trigger detoxification mechanisms in the body and induce genes associated with energy metabolism, anti-inflammation and endogenous-antioxidant network at the cellular level.

This chapter describes the different phytochemicals found in FAV with emphasis on polyphenols, the most important class of compounds in relation to health benefits and amounts ingested on a daily basis in our diet. The contribution of these chemicals to the prevention of chronic diseases is covered and new insights on their possible mode of action are discussed. The scope of this chapter is broad and intends to brush an overview of this very complex and dynamic field of research, at the interface between plant and human physiology. The reader is guided and often referred to bibliographic reviews on topics as diverse and eclectic as phytochemicals biosynthesis, bioavailability, inflammatory responses, cancer etiology, appetite control, insulin resistance, and cognition.


Fruits Vegetables Health Polyphenols Carotenoids Sulphur compounds Cancer Coronary heart disease Obesity Diabetes Neurodegenerative disease Bioavailability 


  1. Adams LS, Phung S, Yee N et al (2010) Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res 70:3594–3605. doi:10.1158/0008-5472.CAN-09-3565PubMedCentralPubMedCrossRefGoogle Scholar
  2. Adams LS, Kanaya N, Phung S et al (2011) Whole blueberry powder modulates the growth and metastasis of MDA-MB-231 triple negative breast tumors in nude mice. J Nutr 141:1805–1812. doi:10.3945/jn.111.140178PubMedCentralPubMedCrossRefGoogle Scholar
  3. Adisakwattana S, Moonsan P, Yibchok-anun S (2008) Insulin-releasing properties of a series of cinnamic acid derivatives in vitro and in vivo. J Agric Food Chem 56:7838–7844. doi:10.1021/jf801208tPubMedCrossRefGoogle Scholar
  4. Agrawal AA, Kurashige NS (2003) A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J Chem Ecol 29:1403–1415. doi:10.1023/A:1024265420375PubMedCrossRefGoogle Scholar
  5. Aires DJ, Rockwell G, Wang T et al (2012) Potentiation of dietary restriction-induced lifespan extension by polyphenols. Biochim Biophys Acta 1822:522–526. doi:10.1016/j.bbadis.2012.01.005PubMedCentralPubMedCrossRefGoogle Scholar
  6. Aiyer HS, Warri AM, Woode DR (2012) Influence of berry polyphenols on receptor signaling and cell-death pathways: implications for breast cancer prevention. J Agric Food Chem 60(23): 5693–5708PubMedCentralPubMedCrossRefGoogle Scholar
  7. Alberdi G, Rodríguez VM, Miranda J et al (2011) Changes in white adipose tissue metabolism induced by resveratrol in rats. Nutr Metabol 8:29. doi:10.1186/1743-7075-8-29CrossRefGoogle Scholar
  8. Ali M, Thomson M, Afzal M (2000) Garlic and onions: their effect on eicosanoid metabolism and its clinical relevance. PLEAFA 62:55–73Google Scholar
  9. Almeida Mélo E, Galvao de Lima VLA, Maciel MIS (2006) Polyphenol, ascorbic acid and total carotenoid contents in common fruits and vegetables. Braz J Food Technol 9:89–94Google Scholar
  10. Andres-Lacueva C, Shukitt-Hale B (2005) Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosci 8:111–120. doi:10.1080/10284150500078117PubMedCrossRefGoogle Scholar
  11. Andriambeloson E, Magnier C, Haan-Archipoff G et al (1998) Natural dietary polyphenolic compounds cause endothelium-dependent vasorelaxation in rat thoracic aorta. J Nutr 128:2324–2333PubMedGoogle Scholar
  12. Anon (2003) USDA database for the proanthocyanidin content of selected foods, 2nd ed. USDA-ARS, BeltsvilleGoogle Scholar
  13. Anon (2004) Fruit and vegetables for health. Report of a joint FAO/WHO workshop 46Google Scholar
  14. Anon (2006) Fruits, vegetables and health: a scientific overview, Canadian Produce Marketing Association. IFAVA, OttawaGoogle Scholar
  15. Anon (2007) Preventing chronic diseases: a vital investment. WHO, GenevaGoogle Scholar
  16. Anon (2011) USDA’s My Plate. In: Accessed 27 Mar 2011Google Scholar
  17. Arai Y, Watanabe S, Kimira M et al (2000) Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 130:2243–2250PubMedGoogle Scholar
  18. Baile CA, Yang J-Y, Rayalam S et al (2011) Effect of resveratrol on fat mobilization. Ann New York Acad Sci 1215:40–47. doi:10.1111/j.1749-6632.2010.05845.xCrossRefGoogle Scholar
  19. Barone E, Calabrese V, Mancuso C (2009) Ferulic acid and its therapeutic potential as a hormetin for age-related diseases. Biogerontology 10:97–108. doi:10.1007/s10522-008-9160-8PubMedCrossRefGoogle Scholar
  20. Bassaganya-Riera J, Skoneczka J, Kingston DGJ et al (2010) Mechanisms of action and medicinal applications of abscisic acid. Curr Med Chem 17:467–478PubMedCrossRefGoogle Scholar
  21. Basu A, Lyons TJ (2012) Strawberries, blueberries, and cranberries in the metabolic syndrome: clinical perspectives. J Agric Food Chem 60:5687–5692. doi:10.1021/jf203488kPubMedCrossRefGoogle Scholar
  22. Basu A, Du M, Leyva MJ et al (2010) Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J Nutri 140:1582–1587. doi:10.3945/jn.110.124701CrossRefGoogle Scholar
  23. Bazzano LA (2005) Dietary intake of fruit and vegetables and risk of diabetis mellitus and cardiovascular diseases. Joint FAO/WHO Workshop fruit and vegetables for health 1–66Google Scholar
  24. Bazzano LA (2006) The high cost of not consuming fruits and vegetables. J Amer Diet Asso 106:1364–1368CrossRefGoogle Scholar
  25. Bendich A (1993) Biological functions of carotenoids. In: Canfield LM, Krinsky NI, Olson JA (eds) Carotenoids in human health, 1st ed. New York Academy of Science, New York, pp 61–67Google Scholar
  26. Bland JS (2011) Metabolic syndrome: the complex relationship of diet to conditions of disturbed metabolism. Func Foods Health Dis 1:1–12Google Scholar
  27. Bodrato N, Franco L, Fresia C et al (2009) Abscisic acid activates the murine microglial cell line N9 through the second messenger cyclic ADP-ribose. J Biol Chem 284:14777–14787. doi:10.1074/jbc.M802604200PubMedCentralPubMedCrossRefGoogle Scholar
  28. Bomser J, Madhavi DL, Singletary K, Smith MLA (1996) In vitro anticancer activity of fruit extract from vaccinium species. Planta Med 62:212–216PubMedCrossRefGoogle Scholar
  29. Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and function of plant isoprenoids. Progr Lipid Res 44:357–429CrossRefGoogle Scholar
  30. Brader G, Tas E, Palva ET (2001) Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiol 126:849–860. doi:10.1104/pp.126.2.849PubMedCentralPubMedCrossRefGoogle Scholar
  31. Brasnyó P, Molnár GA, Mohás M et al (2011) Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Brit J Nutr 106:383–389PubMedCrossRefGoogle Scholar
  32. Brat P, George S, Bellamy A et al (2006) Daily polyphenol intake in France from fruit and vegetables. J Nutr 136:2368–2373PubMedGoogle Scholar
  33. Brewster JL (1994) Onions and other vegetable alliums, 1st ed. CAB International, WallingfordGoogle Scholar
  34. Bruzzone S, Moreschi I, Usai C et al (2007) Abscisic acid is an endogenous cytokine in human granulocytes with cyclic ADP-ribose as second messenger. PNAS 104:5759–5764. doi:10.1073/pnas.0609379104PubMedCentralPubMedCrossRefGoogle Scholar
  35. Bruzzone S, Bodrato N, Usai C et al (2008) Abscisic acid is an endogenous stimulator of insulin release from human pancreatic islets with cyclic ADP Ribose as second messenger. J Biol Chem 283:32188–32197. doi:10.1074/jbc.M802603200PubMedCrossRefGoogle Scholar
  36. Burton-Freeman B (2010) Postprandial metabolic events and fruit-derived phenolics: a review of the science. Brit J Nutr 104:S1–S14. doi:10.1017/S0007114510003909PubMedCrossRefGoogle Scholar
  37. Carlton Tohill B (2005) Dietary intake of fruit and vegetables and management of body weight. In: WHO, Kobe, pp 1–52Google Scholar
  38. Casadesus G, Shukitt-Hale B, Stellwagen HM et al (2004) Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutr Neurosci 7:309–316. doi:10.1080/10284150400020482PubMedCrossRefGoogle Scholar
  39. Challier B, Perarnau JM, Viel JF (1998) Garlic, onion and cereal fibre as protective factors for breast cancer: a French case-control study. Eur J Epidemiol 14:737–747PubMedCrossRefGoogle Scholar
  40. Chen CM (2008) Overview of obesity in Mainland China. Obes Rev 9 Suppl 1:14–21. doi:10.1111/j.1467-789X.2007.00433.xPubMedCrossRefGoogle Scholar
  41. Cherniack EP (2011) Polyphenols: planting the seeds of treatment for the metabolic syndrome. Nutrition 27:617–623. doi:10.1016/j.nut.2010.10.013PubMedCrossRefGoogle Scholar
  42. Cherniack EP (2012) A berry thought-provoking idea: the potential role of plant polyphenols in the treatment of age-related cognitive disorders. Br J Nutr 108:794–800. doi:10.1017/S0007114512000669PubMedCrossRefGoogle Scholar
  43. Choi SS, Lee DH, Lee SH (2012) Blueberry protects LPS-stimulated BV-2 microglia through inhibiting activities of p38 MAPK and ERK1/2. Food Sci Biotechnol 21:1195–1201. doi:10.1007/s10068-012-0156-4CrossRefGoogle Scholar
  44. Clifford MN, Scalbert A (2000) Ellagitannins—nature, occurrence and dietary burden. J Sci Food Agri 80:1118–1125. doi:10.1002/(SICI)1097-0010(20000515)80:7 <1118::AID-JSFA570 > 3.0.CO;2–9Google Scholar
  45. Comalada MN, Camuesco DE, Sierra S et al (2005) In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kB pathway. Eur J Immunol 35:584–592. doi:10.1002/eji.200425778PubMedCrossRefGoogle Scholar
  46. Cooke D, Steward WP, Gescher AJ, Marczylo T (2005) Anthocyans from fruits and vegetables—does bright colour signal cancer chemopreventive activity? Eur J Cancer 41:1931–1940PubMedCrossRefGoogle Scholar
  47. Corzo-Martínez M, Corzo N, Villamiel M (2007) Biological properties of onions and garlic. Trends Food Sci Technol 18:609–625CrossRefGoogle Scholar
  48. Crozier A, Yokota T, Jaganath IB et al (2006) Secondary metabolites in fruits, vegetables, beverages and other plant-based dietary components. In: Crozier A, Clifford MN, Ashihara H (eds) Plant secondary metabolites: occurence, structure and role in the human diet. Blackwell, Oxford, pp 208–302CrossRefGoogle Scholar
  49. Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001–1043Google Scholar
  50. Dangles O, Dufour C (2006) Flavonoids-protein interactions. In: Andersen OM, Markham KR (eds) Flavans and proanthocyanidins. Taylor & Francis, Boca Raton, pp 443–469Google Scholar
  51. Dauchet L, Amouyel P, Dallongeville J (2009) Fruits, vegetables and coronary heart disease. Nat Rev Cardiol 6:599–608. doi:10.1038/nrcardio.2009.131PubMedCrossRefGoogle Scholar
  52. de Lorgeril M, Renaud, Mamelle N et al (1994) Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 343:1454–1459PubMedCrossRefGoogle Scholar
  53. DeFuria J, Bennett G, Strissel KJ et al (2009) Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae. J Nutr 139:1510–1516PubMedCentralPubMedCrossRefGoogle Scholar
  54. Del Rio D, Borges G, Crozier A (2010) Berry flavonoids and phenolics: bioavailability and evidence of protective effects. Brit J Nutr 104:S67–S90. doi:10.1017/S0007114510003958PubMedCrossRefGoogle Scholar
  55. Deprez S, Mila I, Huneau J-F et al (2001) Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells. Antiox Redox Signal 3:957–967. doi:10.1089/152308601317203503CrossRefGoogle Scholar
  56. Dias AS, Porawski M, Alonso M et al (2005) Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. J Nutr 135:2299–2304PubMedGoogle Scholar
  57. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097PubMedCentralPubMedCrossRefGoogle Scholar
  58. Doucet E, Tremblay A (1997) Food intake, energy balance and body weight control. Eur J Clin Nutr 51:846–855PubMedCrossRefGoogle Scholar
  59. Doughty KJ, Kiddle GA, Pye BJ et al (1995) Selective induction of glucosinolates in oilseed rape leaves by methyl jasmonate. Phytochemistry 38:347350CrossRefGoogle Scholar
  60. Duthie SJ (2007) Berry phytochemicals, genomic stability and cancer: evidence for chemoprotection at several stages in the carcinogenic process. Mol Nutr Food Res 51:665–674PubMedCrossRefGoogle Scholar
  61. Edwards RL, Lyon T, Litwin SE et al (2007) Quercetin reduces blood pressure in hypertensive subjects. J Nutr 137:2405–2411PubMedGoogle Scholar
  62. Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. PNAS 94:10367–10372PubMedCentralPubMedCrossRefGoogle Scholar
  63. Faria A, Pestana D, Teixeira D et al (2010) Blueberry anthocyanins and pyruvic acid adducts: anticancer properties in breast cancer cell lines. Phytother Res 24:1862–1869. doi:10.1002/ptr.3213PubMedCrossRefGoogle Scholar
  64. Flegal KM, Carroll MD, Kit BK (2012) Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. JAMA 307:491–498. doi:10.1001/jama.2012.40PubMedCrossRefGoogle Scholar
  65. Fleischauer AT, Arab L (2001) Garlic and cancer: a critical review of the epidemiologic literature. J Nutr 131:1032S–1040SPubMedGoogle Scholar
  66. Ford ES, Will JC, Bowman BA, Venkat Narayan KM (1999) Diabetes mellitus and serum carotenoids: findings from the Third National health and Nutrition Examination Survey. Amer J Epidemiol 149:168–176CrossRefGoogle Scholar
  67. Frankel EN, German JB (2006) Antioxidants in foods and health: problems and fallacies in the field. J Sci Food Agri 86:1999–2001. doi:10.1002/jsfa.2616CrossRefGoogle Scholar
  68. Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog lipid Res 43:228–265PubMedCrossRefGoogle Scholar
  69. Frisardi V, Solfrizzi V, Seripa D et al (2010) Metabolic-cognitive syndrome: a cross-talk between metabolic syndrome and Alzheimer’s disease. Ageing Res Rev 9:399–417. doi:10.1016/j.arr.2010.04.007PubMedCrossRefGoogle Scholar
  70. Fuhrman B, Aviram M (2001) Flavonoids protect LDL from oxidation and attenuate atherosclerosis. Curr Op Lipid 12:41–48CrossRefGoogle Scholar
  71. Galeone C, Pelucchi C, Levi F et al (2006) Onion and garlic use and human cancer. Am J Clin Nutr 84:1027–1032PubMedGoogle Scholar
  72. Galli RL, Bielinski DF, Szprengiel A et al (2006) Blueberry supplemented diet reverses age-related decline in hippocampal HSP70 neuroprotection. NBA 27:344–350. doi:10.1016/j.neurobiolaging.2005.01.017Google Scholar
  73. Gallicchio L, Boyd K, Matanoski G et al (2008) Carotenoids and the risk of developing lung cancer: a systematic review. Amer J Clin Nutr 88:372–383PubMedGoogle Scholar
  74. Ghosh D, Scheepens A (2009) Vascular action of polyphenols. Mol Nutri Food Res 53:322–331. doi:10.1002/mnfr.200800182CrossRefGoogle Scholar
  75. Giacalone M, Di Sacco F, Traupe I et al (2011) Antioxidant and neuroprotective properties of blueberry polyphenols: a critical review. Nutr Neurosci 14:119–125. doi:10.1179/1476830511Y.0000000007PubMedCrossRefGoogle Scholar
  76. Godycki-Cwirko M, Krol M, Krol B et al (2010) Uric acid but not apple polyphenols Is responsible for the rise of plasma antioxidant activity after apple juice consumption in healthy subjects. J Amer Coll Nutr 29:397–406CrossRefGoogle Scholar
  77. Gonzalez CA, Riboli E (2006) Diet and cancer prevention: where we are, where we are going. Nutr Cancer 56:225–231PubMedCrossRefGoogle Scholar
  78. González R, Ballester I, López-Posadas R et al (2011) Effects of flavonoids and other polyphenols on inflammation. Crit Rev Food Sci Nutr 51:331–362. doi:10.1080/10408390903584094PubMedCrossRefGoogle Scholar
  79. Goodman GE, Thornquist MD, Balmes J et al (2004) The Beta-Carotene and Retinol Efficacy Trial: incidence of lung cancer and cardiovascular disease mortality during 6-year follow-up after stopping β-carotene and retinol supplements. J Nat Cancer Inst 96:1743–1751PubMedCrossRefGoogle Scholar
  80. Gordillo G, Fang H, Khanna S et al (2009) Oral administration of blueberry inhibits angiogenic tumor growth and enhances survival of mice with endothelial cell neoplasm. Antiox Redox Signal 11:47–58. doi:10.1089/ars.2008.2150CrossRefGoogle Scholar
  81. Grace MH, Ribnicky DM, Kuhn P et al (2009) Hypoglycemic activity of a novel anthocyaninrich formulation from lowbush blueberry, Vaccinium angustifolium Aiton. Phytomedicine 16:406–415. doi:10.1016/j.phymed.2009.02.018PubMedCentralPubMedCrossRefGoogle Scholar
  82. Gramann J, Gerald L (2005) Terpenoids as plant antioxidants. In: Vitamins & Hormones. Academic Press, pp 505–535Google Scholar
  83. Grant WB (2004) A multicountry ecologic study of risk and risk reduction factors for prostate cancer mortality. Eur Urol 45:271–279PubMedCrossRefGoogle Scholar
  84. Griffiths G, Trueman L, Crowther TE et al (2002) Onions—a global benefit to health. Phytother Res 16:603–615PubMedCrossRefGoogle Scholar
  85. Gu Y, Nieves JW, Stern Y et al (2010) Food combination and Alzheimer disease risk: a protective diet. Arch Neurol 67:699–706. doi:10.1001/archneurol.2010.84PubMedCentralPubMedCrossRefGoogle Scholar
  86. Güçlü-Üstünda Ö, Mazza G (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 47:231–258Google Scholar
  87. Guri AJ, Hontecillas R, Bassaganya-Riera J (2007) Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration. Clin Nutr 26:107–116PubMedCrossRefGoogle Scholar
  88. Guri AJ, Hontecillas R, Bassaganya-Riera J (2010a) Abscisic acid synergizes with rosiglitazone to improve glucose tolerance and down-modulate macrophage accumulation in adipose tissue: possible action of the cAMP/PKA/PPAR [gamma] axis. Clin Nutr 29:646–653PubMedCentralPubMedCrossRefGoogle Scholar
  89. Guri AJ, Misyak SA, Hontecillas R et al (2010b) Abscisic acid ameliorates atherosclerosis by suppressing macrophage and CD4 + T cell recruitment into the aortic wall. J Nutr Biochem 21:1178–1185. doi:10.1016/j.jnutbio.2009.10.003Google Scholar
  90. Habauzit V, Morand C (2012) Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: an update for clinicians. Thera Adv Chron Dis 3(2):87–106CrossRefGoogle Scholar
  91. Håkansson A, Bränning C, Molin G et al (2012) Blueberry husks and probiotics attenuate colorectal inflammation and oncogenesis, and liver injuries in rats exposed to cycling DSS-treatment. PLoS ONE 7:e33510. doi:10.1371/journal.pone.0033510PubMedCentralPubMedCrossRefGoogle Scholar
  92. Halliwell B, Rafter J, Jenner A (2005) Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not? Am J Clin Nutr 81:268S–276SPubMedGoogle Scholar
  93. Hamer M, Chida Y (2007) Intake of fruit, vegetables, and antioxidants and risk of type 2 diabetes: systematic review and meta-analysis. J Hypertension 25:2361–2369CrossRefGoogle Scholar
  94. Hanhineva K, Törrönen R, Bondia-Pons I et al (2010) Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 11:1365–1402. doi:10.3390/ijms11041365PubMedCentralPubMedCrossRefGoogle Scholar
  95. Harborne JB (1977) Phytochemistry of fruits and vegetables: an ecological overview. In: Tomas-Barberan FA, Robins RJ (eds) Proceedings of the phytochemical society of Europe—phytochemistry of fruit and vegetables. Clarendon Press, Oxford, pp 353–367Google Scholar
  96. Haslam E, Lilley TH (1988) Natural astringency of foodstuffs—a molecular interpretation. CRC Rev Food Sci Nutr 27:1–40CrossRefGoogle Scholar
  97. He FJ, Nowson CA, MacGregor GA (2006) Fruit and vegetable consumption and stroke: meta-analysis of cohort studies. Lancet 367:320–326PubMedCrossRefGoogle Scholar
  98. Hercberg S, Galan P, Preziosi P et al (2004) The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med 164:2335–2342. doi:10.1001/archinte.164.21.2335PubMedCrossRefGoogle Scholar
  99. Hermsdorff HHM, Zulet MA, Puchau B, Martinez JA (2010) Fruit and vegetable consumption and proinflammatory gene expression from peripheral blood mononuclear cells in young adults: a translational study. Nutr Metabol 7:42. doi:10.1186/1743-7075-7-42CrossRefGoogle Scholar
  100. Hertog MG, Kromhout D, Aravanis C et al (1995) Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med 155:381–386PubMedCrossRefGoogle Scholar
  101. Hollman PCH, Arts ICW (2000) Flavonols, flavones and flavanols—nature, occurrence and dietary burden. J Sci Food Agri 80:1081–1093. doi:10.1002/(SICI)1097-0010(20000515)80:7 <1081::AID-JSFA566> 3.0.CO;2–GGoogle Scholar
  102. Hollman PCH, Cassidy A, Comte B et al (2011a) The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established. J Nutr 141:989S–1009S. doi:10.3945/jn.110.131490PubMedCrossRefGoogle Scholar
  103. Hollman PCH, Cassidy A, Comte B et al (2011b) The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established. The journal of Nutrition 141:989S–1009S. doi:10.3945/jn.110.131490CrossRefGoogle Scholar
  104. Hu J, La Vecchia C, Negri E et al (1999) Diet and brain cancer in adults: a case-control study in northeast China. Int J Cancer 81:20–23PubMedCrossRefGoogle Scholar
  105. Hubbard GP, Wolffram S, Lovegrove JA, Gibbins JM (2006) Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in man: a pilot study. J Thromb Haem 2:2138–2145CrossRefGoogle Scholar
  106. Hughes DA (1999) Effects of carotenoids on human immune fonction. Proc Nutr Soc 58:713–718PubMedCrossRefGoogle Scholar
  107. Hung H-C, Joshipura KJ, Jiang R et al (2004) Fruit and vegetable intake and risk of major chronic disease. J Nat Cancer Inst 96:1577–1584. doi:10.1093/jnci/djh296PubMedCrossRefGoogle Scholar
  108. Jeong W-S, Jun M, Kong A-NT (2006) Nrf2: a potential molecular target for cancer chemoprevention by natural compounds. Antiox Redox Sign 8:99–106. doi:10.1089/ars.2006.8.99CrossRefGoogle Scholar
  109. Jia H-F, Chai Y-M, Li C-L et al (2011) Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol 157:188–199. doi:10.1104/pp.111.177311PubMedCentralPubMedCrossRefGoogle Scholar
  110. Jordt S-E, McKemy DD, Julius D (2003) Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr Op Neurobiol 13:487–492PubMedCrossRefGoogle Scholar
  111. Joseph JA, Shukitt-Hale B, Denisova NA et al (1998) Long-term dietary strawberry, spinach, or vitamin E supplementation retards the onset of age-related neuronal signal-transduction and cognitive behavioral deficits. J Neurosci 18:8047–8055PubMedGoogle Scholar
  112. Joseph JA, Fisher DR, Cheng V et al (2008) Cellular and behavioral effects of stilbene resveratrol analogues: implications for reducing the deleterious effects of aging. J Agric Food Chem 56:10544–10551. doi:10.1021/jf802279hPubMedCrossRefGoogle Scholar
  113. Kalea AZ, Clark K, Schuschke DA, Klimis-Zacas DJ (2009) Vascular reactivity is affected by dietary consumption of wild blueberries in the Sprague-Dawley rat. J Med Food 12:21–28. doi:10.1089/jmf.2008.0078PubMedCrossRefGoogle Scholar
  114. Kausar H, Jeyabalan J, Aqil F et al (2012) Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Let 325:54–62. doi:10.1016/j.canlet.2012.05.029CrossRefGoogle Scholar
  115. Keck AS, Finley JW (2004) Cruciferous vegetables: cancer protective mechanisms of glucosinolate hydrolysis products and selenium. Integr Cancer Therap 3:5–12CrossRefGoogle Scholar
  116. Kendall CWC, Jenkins DJA (2004) A dietary portfolio: maximal reduction of low-density lipoprotein cholesterol with diet. Curr Atheroscler Rep 6:492–498PubMedCrossRefGoogle Scholar
  117. Khaw KT, Wareham NJ, Bingham SA et al (2007) Combined impact of health behaviours and mortality in men and women: The EPIC-Norfolk prospective population study. PLOS Med 5:e12CrossRefGoogle Scholar
  118. Kiddle GA, Doughty KJ, Wallsgrove RM (1994) Salicylic acid-induced accumulation of glucosinolate biosynthesis from Brassica juncea cell cultures. J Exp Bot 45:1343–1346CrossRefGoogle Scholar
  119. Kim KH, Park Y (2011) Food components with anti-obesity effect. Ann Rev Food Sci Technol 2:237–257CrossRefGoogle Scholar
  120. Kimura M, Rodriguez-Amaya DB (2003) Carotenoid composition of hydroponic leafy vegetables. J Agric Food Chem 51:2603–2607PubMedCrossRefGoogle Scholar
  121. Kliebenstein DJ, Kroymann J, Mitchell-Olds T (2005) The glucosinolate-myrosinase system in an ecological and evolutionary context. Curr Op Plant Biol 8:264–271CrossRefGoogle Scholar
  122. Kliebenstien DJ (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant, Cell & Environment 27:675–684CrossRefGoogle Scholar
  123. Klipstein-Goldberg K, Launer LJ, Geleinjnse JM et al (2000) Serum carotenoids and atherosclerosis: the Rotterdam study. Atherosclerosis 148:49–56CrossRefGoogle Scholar
  124. Knekt P, Jarvinen R, Teppo L et al (1999) Role of various carotenoids in lung cancer prevention. J Nat Cancer Inst 91:182–184PubMedCrossRefGoogle Scholar
  125. Kogure K, Goto S, Nishimura M et al (2002) Mechanism of potent antiperodixidative effect of capsaicin. Biochim Biophys Acta 1573:84–92PubMedCrossRefGoogle Scholar
  126. Kraft TFB, Schmidt BM, Yousef GG et al (2006) Chemopreventive potential of wild lowbush blueberry fruits in multiple stages of carcinogenesis. J Food Sci 70:S159–S166. doi:10.1111/j.1365-2621.2005.tb07151.xCrossRefGoogle Scholar
  127. Krikorian R, Shidler MD, Nash TA et al (2010) Blueberry supplementation improves memory in older adults. J Agric Food Chem 58:3996–4000. doi:10.1021/jf9029332PubMedCentralPubMedCrossRefGoogle Scholar
  128. Kroon PA, Clifford MN, Crozier A et al (2004) How should we assess the effects of exposure to dietary polyphenols in vitro? Am J Clin Nutr 80:15–21PubMedGoogle Scholar
  129. Kubec R, Svobodova M, Velisek J (2000) Distribution of S-alk(en)ylcysteine sulfoxides in some Allium species. Identification of a new flavor precursor: S-ethylcysteine sulfoxide (Ethiin). J Agric Food Chem 48:428–433. doi:10.1021/jf990938fPubMedCrossRefGoogle Scholar
  130. Kuhnau J (1976) A class of semi-essential food components: their role in human nutrition. World Rev Nutr Diet 24:117–191PubMedCrossRefGoogle Scholar
  131. Labbe D, Provençal M, Lamy S et al (2009) The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J Nutr 139:646–652. doi:10.3945/jn.108.102616PubMedCrossRefGoogle Scholar
  132. Lampe JW (1999) Health effects of vegetables and fruit: assessing mechanisms of action in human experimental studies. Am J Clin Nutr 70:475S–490SPubMedGoogle Scholar
  133. Lamport DJ, Dye L, Wightman J, Lawton CL (2012) The effects of flavonoid and other polyphenol consumption on cognitive performance: a systematic research review of human experimental and epidemiological studies Nutri Aging 1:5–25. doi:10.3233/NUA-2012-0002Google Scholar
  134. Lancaster JE, Kelly KE (1983) Quantitative analysis of the S-alk(en)yl-L-cysteine sulphoxides in onion (Allium cepa L.). J Sci Food Agri 34:1229–1235. doi:10.1002/jsfa.2740341111CrossRefGoogle Scholar
  135. Lau FC, Shukitt-Hale B, Joseph JA (2005) The beneficial effects of fruit polyphenols on brain aging. NBA 26 Suppl 1:128–132. doi:10.1016/j.neurobiolaging.2005.08.007Google Scholar
  136. Lepage-Degivry MT, Bidard NN, Rouvier E et al (1986) Presence of abscisic acid, a phytohormone, in mammalian brain. PNAS 83:1155–1158CrossRefGoogle Scholar
  137. Letenneur L, Proust-Lima C, Le Gouge A et al (2007) Flavonoid intake and cognitive decline over a 10-year period. Amer J Epidem 165:1364–1371. doi:10.1093/aje/kwm036CrossRefGoogle Scholar
  138. Limpens J, Schroder FH, de Ridder CMA et al (2006) Combined lycopene and vitamin E treatment suppresses the growth of PC-346C human prostate cancer cells in nude mice. J Nutr 136:1287–1293PubMedGoogle Scholar
  139. Loke WM, Hodgson JM, Proudfoot JM et al (2008a) Pure dietary flavonoids quercetin and (−)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am J Clin Nutr 88:1018–1025PubMedGoogle Scholar
  140. Loke WM, Proudfoot JM, Stewart S et al (2008b) Metabolic transformation has a profound effect on anti-inflammatory activity of flavonoids such as quercetin: lack of association between antioxidant and lipoxygenase inhibitory activity. Biochem Pharmacol 75:1045–1053PubMedCrossRefGoogle Scholar
  141. Long LH, Clement MV, Halliwell B (2000) Artifacts in cell culture: rapid generation of hydrogen peroxide on addition of (−)-epigallocatechin, (−)-epigallocatechin gallate, (+)-catechin, and quercetin to commonly used cell culture media. Biochem Biophys Acta 273:50–53Google Scholar
  142. Lotito SB, Frei B (2006) Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Rad Biol Med 41:1727–1746PubMedCrossRefGoogle Scholar
  143. Macheix J-J, Fleuriet A, Billot J. (1990) Fruits phenolics. Boca Raton, Fla. CRC Press, p 378Google Scholar
  144. Manach C, Williamson G, Morand C et al (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242PubMedGoogle Scholar
  145. Mantena SK, Baliga MS, Katiyar SK (2006) Grape seed proanthocyanidins induce apoptosis and inhibit metastasis of highly metastatic breast carcinoma cells. Carcinogenesis 27:1682–1691. doi:10.1093/carcin/bgl030PubMedCrossRefGoogle Scholar
  146. Martineau LC, Couture A, Spoor D et al (2006) Anti-diabetic properties of the Canadian lowbush blueberry Vaccinium angustifolium Ait. Phytomedicine 13:612–623PubMedCrossRefGoogle Scholar
  147. Matchett MD, MacKinnon SL, Sweeney MI et al (2006) Inhibition of matrix metalloproteinase activity in DU145 human prostate cancer cells by flavonoids from lowbush blueberry (Vaccinium angustifolium): possible roles for protein kinase C and mitogen-activated protein-kinase-mediated events. J Nutr Biochem 17:117–125. doi:10.1016/j.jnutbio.2005.05.014PubMedCrossRefGoogle Scholar
  148. Mathews-Roth MM (1993) Carotenoids in erythropoietic protoporphyria and other photosensitivity diseases. Ann New York Acad Sci 691:127–138CrossRefGoogle Scholar
  149. McDougall GJ, Kulkarni NN, Stewart D (2008) Current developments on the inhibitory effects of berry polyphenols on digestive enzymes. BioFactors 34:73–80PubMedCrossRefGoogle Scholar
  150. McDougall GJ, Stewart D (2005) The inhibitory effects of berry polyphenols on digestive enzymes. BioFactors 23:189–195PubMedCrossRefGoogle Scholar
  151. McGhie TK, Ainge GD, Barnett LE et al (2003) Anthocyanin glycosides from berry fruit are absorbed and excreted unmetabolized by both humans and rats. J Agric Food Chem 51:4539–4548PubMedCrossRefGoogle Scholar
  152. McIntyre KL, Harris CS, Saleem A et al (2009) Seasonal phytochemical variation of anti-glycation principles in lowbush blueberry (Vaccinium angustifolium). Planta Med 75:286–292. doi:10.1055/s-0028-1088394PubMedCrossRefGoogle Scholar
  153. McNaughton SA, Marks GC (2003) Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. Brit J Nutr 90:687–697PubMedCrossRefGoogle Scholar
  154. Milbury PE, Vita JA, Blumberg JB (2010) Anthocyanins are bioavailable in humans following an acute dose of cranberry juice. J Nutr 140:1099–1104. doi:10.3945/jn.109.117168PubMedCrossRefGoogle Scholar
  155. Milner JA (2001) Garlic: the mystical food in health promotion. In: Wildman REC (ed) Handbook of nutraceuticals and functional foods. CRC Press, Boca Raton, pp 193–207Google Scholar
  156. Moghe SS, Juma S, Imrhan V (2012) Effect of blueberry polyphenols on 3T3-F442A preadipocyte differentiation. J Med Food 15:448–452PubMedCrossRefGoogle Scholar
  157. Molan AL, Lila MA, Mawson J (2008) Satiety in rats following blueberry extract consumption induced by appetite-suppressing mechanisms unrelated to in vitro or in vivo antioxidant capacity. Food Chem 107:1039–1044CrossRefGoogle Scholar
  158. Munday R, Munday JS, Munday CM (2003) Comparative effects of mono-, di-, tri-, and tetrasulfides derived from plants of the Allium family: redox cycling in vitro and hemolytic activity and Phase 2 enzyme induction in vivo. Free Rad Biol Med 34:1200–1211PubMedCrossRefGoogle Scholar
  159. Murphy BT, MacKinnon SL, Yan X et al (2003) Identification of triterpene hydroxycinnamates with in vitro antitumor activity from whole cranberry fruit (Vaccinium macrocarpon). J Agric Food Chem 51:3541–3545. doi:10.1021/jf034114gGoogle Scholar
  160. Ness AR, Powles JW (1997) Fruit and vegetables, and cardiovascular disease: a review. Internat J Epidemiol 26:1–13CrossRefGoogle Scholar
  161. Neto CC (2007) Cranberry and blueberry: evidence for protective effects against cancer and vascular diseases. Mol Nutr Food Res 51:652–664. doi:10.1002/mnfr.200600279PubMedCrossRefGoogle Scholar
  162. Neto CC, Amoroso JW, Liberty AM (2008) Anticancer activities of cranberry phytochemicals: an update. Mol Nutr Food Res 52:S18–S27. doi:10.1002/mnfr.200700433PubMedGoogle Scholar
  163. Omenn GS, Goodman GE, Thornquist MD et al (1996) Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med 334:1150–1155. doi:10.1056/NEJM199605023341802PubMedCrossRefGoogle Scholar
  164. Ono M, Masuoka C, Koto M et al (2002) Antioxidant ortho-benzoyloxyphenyl acetic acid ester, vaccihein A, from the fruit of rabbiteye blueberry (Vaccinium ashei). Chem Pharm Bull 50:1416–1417PubMedCrossRefGoogle Scholar
  165. Ostertag LM, O’Kennedy N, Kroon PA et al (2010) Impact of dietary polyphenols on human platelet function–a critical review of controlled dietary intervention studies. Mol Nutri Food Res 54:60–81. doi:10.1002/mnfr.200900172CrossRefGoogle Scholar
  166. Pajuelo D, Díaz S, Quesada H et al (2011) Acute administration of grape seed proanthocyanidin extract modulates energetic metabolism in skeletal muscle and BAT mitochondria. J Agric Food Chem 59(8):4279–4287. doi:10.1021/jf200322xGoogle Scholar
  167. Palozza P, Krinsky NI (1992) Antioxidant effects of carotenoids in vivo and in vitro: an overview. Meth Enzymol 213:403–420PubMedCrossRefGoogle Scholar
  168. Papandreou MA, Dimakopoulou A, Linardaki ZI et al (2009) Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behaviour Brain Res 198:352–358. doi:10.1016/j.bbr.2008.11.013CrossRefGoogle Scholar
  169. Parr AJ, Bolwell GP (2000) Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J Sci Food Agric 80:985–1012CrossRefGoogle Scholar
  170. Perera RM, Bardeesy N (2011) Cancer: when antioxidants are bad. Nature London 475:43–44. doi:10.1038/475043aPubMedCrossRefGoogle Scholar
  171. Perez-Vizcaino F, Duarte J, Andriantsitohaina R (2006) Endothelial function and cardiovascular disease: effects of quercetin and wine polyphenols. Free Radic Res 40:1054–1065. doi:10.1080/10715760600823128PubMedCrossRefGoogle Scholar
  172. Potter JD (2005) Vegetables, fruit, and cancer. Lancet 366:527–530PubMedCrossRefGoogle Scholar
  173. Prasad K, Laxdal VA, Yu M, Raney BL (1995) Antioxidant activity of allicin, an active principle in garlic. Mol Cell Biochem 148:183–189. doi:10.1007/BF00928155PubMedCrossRefGoogle Scholar
  174. Price KR, Johnson IT, Fenwick GR (1987) The chemistry and biological significance of saponins in foods and feeding stuffs. CRC Rev Food Sci Nutr 26:27–137CrossRefGoogle Scholar
  175. Prior RL, Wu X (2006) Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Radic Res 40:1014–1028. doi:10.1080/10715760600758522PubMedCrossRefGoogle Scholar
  176. Proteggente AR, Pannala AS, Paganga G et al (2002) The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radic Res 36:217–233PubMedCrossRefGoogle Scholar
  177. Ramassamy C (2006) Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 545:51–64. doi:10.1016/j.ejphar.2006.06.025PubMedCrossRefGoogle Scholar
  178. Rao A, Rao L (2007) Carotenoids and human health. Pharmacol Res 55:207–216. doi:10.1016/j.phrs.2007.01.012Google Scholar
  179. Rao AV, Agarwal S (1998) Bioavailability and in vivo antioxidant properties of lycopene from tomato products and their possible role in the prevention of cancer. Nutr Cancer 31:199–203. doi:10.1080/01635589809514703PubMedCrossRefGoogle Scholar
  180. Rechner AR, Kroner C (2005) Anthocyanins and colonic metabolites of dietary polyphenols inhibit platelet function. Thromb Res 116:327–334. doi:10.1016/j.thromres.2005.01.002PubMedCrossRefGoogle Scholar
  181. Reinbach HC, Smeets A, Martinussen T et al (2009) Effects of capsaicin, green tea and CH-19 sweet pepper on appetite and energy intake in humans in negative and positive energy balance. Clin Nutr 28:260–265. doi:10.1016/j.clnu.2009.01.010PubMedCrossRefGoogle Scholar
  182. Rendeiro C, Vauzour D, Kean RJ et al (2012) Blueberry supplementation induces spatial memory improvements and region-specific regulation of hippocampal BDNF mRNA expression in young rats. Psychopharmacology 223:319–330. doi:10.1007/s00213-012-2719-8PubMedCrossRefGoogle Scholar
  183. Riccioni G (2009) Carotenoids and cardiovascular disease. Curr Atheroscler Rep 11:434–439. doi:10.1007/s11883-009-0065-zPubMedCrossRefGoogle Scholar
  184. Riso P, Visioli F, Grande S et al (2006) Effect of a tomato-based drink on markers of inflammation, immunomodulation, and oxidative stress. J Agric Food Chem 54:2563–2566. doi:10.1021/jf053033cPubMedCrossRefGoogle Scholar
  185. Rissanen TH, Voutilainen S, Virtanen JK et al (2003) Low intake of fruits, berries and vegetables is associated with excess mortality in men: the Kuopio Ischaemic Heart Disease Risk Factor (KIHD) study. J Nutr 133:199–204PubMedGoogle Scholar
  186. Ristow M, Zarse K, Oberbach A et al (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. PNAS 106:8665–8670. doi:10.1073/pnas.0903485106PubMedCentralPubMedCrossRefGoogle Scholar
  187. Rodriguez-Amaya DB, Kimura M, Godoy HT, Amaya-Farfan J (2008) Updated Brazilian database on food carotenoids: factors affecting carotenoid composition. J Food Comp Anal 21:445–463CrossRefGoogle Scholar
  188. Romero C, Brenes M, García P, Garrido A (2002) Hydroxytyrosol 4-β- d-glucoside, an important phenolic compound in olive fruits and derived products. J Agric Food Chem 50:3835–3839. doi:10.1021/jf011485tPubMedCrossRefGoogle Scholar
  189. Rosa WA, Heaney RK, Fenwick GR, Portas CAM (1997) Glucosinolates in crop plants. Horticult Rev 19:99–215Google Scholar
  190. Rose P, Whiteman M, Moore PK, Zhu YZ (2005) Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. NPR 22:351–368PubMedGoogle Scholar
  191. Rothwell JA, Urpi-Sarda M, Boto-Ordonez M et al (2012) Phenol-Explorer 2.0: a major update of the Phenol-Explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. Database 2012:1–8. doi:10.1093/database/bas031CrossRefGoogle Scholar
  192. Sabour-Pickett S, Nolan JM, Loughman J, Beatty S (2012) A review of the evidence germane to the putative protective role of the macular carotenoids for age-related macular degeneration. Mol Nutr Food Res 56:270–286. doi:10.1002/mnfr.201100219PubMedCrossRefGoogle Scholar
  193. Saura-Calixto F (2012) Concept and health-related properties of nonextractable polyphenols: the missing dietary polyphenols. J Agric Food Chem 60:11195–11200. doi:10.1021/jf303758jPubMedCrossRefGoogle Scholar
  194. Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130:2073S–2085SPubMedGoogle Scholar
  195. Scalbert A, Johnson IT, Saltmarsh M (2005) Polyphenols: antioxidants and beyond. Am J Clin Nutr 81:215S–217PubMedGoogle Scholar
  196. Scheepens A, Tan K, Paxton JW (2010) Improving the oral bioavailability of beneficial polyphenols through designed synergies. Genes Nutr 5:75–87. doi:10.1007/s12263-009-0148-zPubMedCentralPubMedCrossRefGoogle Scholar
  197. Schewe T, Steffen Y, Sies H (2008) How do dietary flavanols improve vascular function? A position paper. Arch Biochem Biophys 476:102–106. doi:10.1016/ Scholar
  198. Schmidt BM, Erdman JW Jr, Lila MA (2006) Differential effects of blueberry proanthocyanidins on androgen sensitive and insensitive human prostate cancer cell lines. Cancer Let 231:240–246. doi:10.1016/j.canlet.2005.02.003CrossRefGoogle Scholar
  199. Seeram NP (2008) Berry fruits for cancer prevention: current status and future prospects. J Agric Food Chem 56:630–635PubMedCrossRefGoogle Scholar
  200. Seeram NP, Adams LS, Zhang Y et al (2006) Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cellsin vitro. J Agric Food Chem 54:9329–9339. doi:10.1021/jf061750gGoogle Scholar
  201. Serrano J, Puupponen-Pimiä R, Dauer A et al (2009) Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res 53:S310–S329. doi:10.1002/mnfr.200900039PubMedCrossRefGoogle Scholar
  202. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14PubMedCrossRefGoogle Scholar
  203. Shukitt-Hale B, Lau FC, Joseph JA (2008) Berry fruit supplementation and the aging brain. J Agric Food Chem 56:636–641. doi:10.1021/jf072505fPubMedCrossRefGoogle Scholar
  204. Smith MAL, Marley KA, Seigler D et al (2000) Bioactive properties of wild blueberry fruits. J Food Sci 65:352–356. doi:10.1111/j.1365-2621.2000.tb16006.xCrossRefGoogle Scholar
  205. Snodderly DM (1995) Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr 62:1448S–1461PubMedGoogle Scholar
  206. Spencer JPE (2008) Food for thought: the role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance. Proc Nutr Soc 67:238–252PubMedCrossRefGoogle Scholar
  207. Srivastava KC (1986) Onion exerts antiaggregatory effects by altering arachidonic acid metabolism in platelets. Prostag Leukotr Med 24:43–50CrossRefGoogle Scholar
  208. Stahl W, Sies H (2005) Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta 1740:101–107Google Scholar
  209. Steffen Y, Gruber C, Schewe T, Sies H (2008) Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Arch Biochem Biophys 469:209–219. doi:10.1016/ Scholar
  210. Stintzing FC, Carle R (2007) Betalains—emerging prospects for food scientists. Trends Food Sci Technol 18:514–525. doi:10.1016/j.tifs.2007.04.012CrossRefGoogle Scholar
  211. Suh N, Paul S, Hao X et al (2007) Pterostilbene, an active constituent of blueberries, suppresses aberrant crypt foci formation in the azoxymethane-induced colon carcinogenesis model in rats. Clin Cancer Res 13:350–355. doi:10.1158/1078-0432.CCR-06-1528PubMedCrossRefGoogle Scholar
  212. Surh Y-J, Sup Lee S (1995) Capsaicin, a double-edged sword: toxicity, metabolism, and chemopreventive potential. Life Sci 56:1845–1855PubMedCrossRefGoogle Scholar
  213. Szkudelska K, Szkudelski T (2010) Resveratrol, obesity and diabetes. Eur J Pharmacol 635:1–8. doi:10.1016/j.ejphar.2010.02.054PubMedCrossRefGoogle Scholar
  214. Talalay P, Fahey JW (2001) Phytochemicals from cruciferous plants protect agains cancer by modulating carcinogen matabolism. Journal of Nutrition 131:3027–3033Google Scholar
  215. Tomas-Barberan FA, Gil MI (2008) Improving the health-promoting properties of fruit and vegetable product. Woodhead Publishing Limited, CRC Press, CambridgeCrossRefGoogle Scholar
  216. Traka M, Mithen R (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8:269–282. doi:10.1007/s11101-008-9103-7CrossRefGoogle Scholar
  217. Trichopoulou A, Naska A, Antoniou A et al (2003) Vegetable and fruit: the evidence in their favour and the public health perspective. Int J Vitam Nutr Res 73:63–69PubMedCrossRefGoogle Scholar
  218. van den Berg H, Faulks R, Granado HF (2000) The potential for the improvement of carotenoid levels in foods and the likely systemic effects. J Sci Food Agri 80:880–912. doi:10.1002/(SICI)1097-0010(20000515)80:7 <880::AID-JSFA646> 3.0.CO;2–1Google Scholar
  219. Van’t Veer P, Jansen MCJF, Klerk M, Kok FJ (2000) Fruits and vegetables in the prevention of cancer and cardiovascular disease. Pub Health Nutr 3:103–107Google Scholar
  220. Verkerk R, Schreiner M, Krumbein A et al (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53:S219–S256. doi:10.1002/mnfr.200800065PubMedCrossRefGoogle Scholar
  221. Voorrips LE, Goldbohm RA, van Poppel G et al (2000) Vegetable and fruit consumption and risks of colon and rectal cancer in a prospective cohort study: the Netherlands Cohort Study on Diet and Cancer. Amer J Epidem 152:1081–1092CrossRefGoogle Scholar
  222. Voutilainen S, Nurmi T, Mursu J, Rissanen TH (2006) Carotenoids and cardiovascular health. Amer J Clin Nutr 83:1265–1271PubMedGoogle Scholar
  223. Vuong T, Martineau L, Ramassamy C et al (2007) Fermented Canadian lowbush blueberry juice stimulates glucose uptake and AMP-activated protein kinase in insulin-sensitive cultured muscle cells and adipocytes. Can J Physiol Pharm 85:956–965CrossRefGoogle Scholar
  224. Vuong T, Matar C, Ramassamy C (2010) Biotransformed blueberry juice protects neurons from hydrogen peroxide-induced oxidative stress and mitogen-activated protein kinase pathway alterations. Brit J Nutr 104:656–663PubMedCrossRefGoogle Scholar
  225. Waffo-Teguo P, Krisa S, Richard T, Mérillon J-M (2008) Grapevine stilbenes and their biological effects. In: Ramawat KG, Mérillon JM (eds) Bioactive molecules and medicinal plants. Springer, pp 25–54Google Scholar
  226. Wedge DE, Meepagala KM, Magee JB et al (2001) Anticarcinogenic activity of strawberry, blueberry, and raspberry extracts to breast and cervical cancer cells. J Med Food 4:49–51. doi:10.1089/10966200152053703PubMedCrossRefGoogle Scholar
  227. Williams CM, El-Mohsen MA, Vauzour D et al (2008) Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Rad Biol Med 45:295–305. doi:10.1016/j.freeradbiomed.2008.04.008PubMedCrossRefGoogle Scholar
  228. Williams RJ, Spencer J (2011) Flavonoids, cognition and dementia: actions, mechanisms and potential therapeutic utility for Alzheimer’s disease. Free Rad Biol Med 52:35–45PubMedCrossRefGoogle Scholar
  229. Williamson G, Clifford MN (2010) Colonic metabolites of berry polyphenols: the missing link to biological activity? Brit J Nutr 104:S48–S66. doi:10.1017/S0007114510003946PubMedCrossRefGoogle Scholar
  230. Wilms LC, Hollman PCH, Boots AW, Kleinjans JCS (2005) Protection by quercetin and quercetin-rich fruit juice against induction of oxidative DNA damage and formation of BPDE-DNA adducts in human lymphocytes. Mut Res/Gen Toxicol Environ Mutagen 582:155–162. doi:10.1016/j.mrgentox.2005.01.006CrossRefGoogle Scholar
  231. Woods SC, D’Alessio DA (2008) Central control of body weight and appetite. J Clin Endocrinol Metab 93:s37–s50. doi:10.1210/jc.2008-1630PubMedCentralPubMedCrossRefGoogle Scholar
  232. World Cancer Research Fund (2007) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. World Cancer Research Fund, Washington DC: AICRGoogle Scholar
  233. Wu X, Kang J, Xie C et al (2010) Dietary blueberries attenuate atherosclerosis in apolipoprotein E-deficient mice by upregulating antioxidant enzyme expression. J Nutr 140:1628–1632. doi:10.3945/jn.110.123927PubMedCrossRefGoogle Scholar
  234. Xie C, Kang J, Ferguson ME et al (2011) Blueberries reduce pro-inflammatory cytokine TNF-α and IL-6 production in mouse macrophages by inhibiting NF-κB activation and the MAPK pathway. Mol Nut Food Res 55:1587–1591. doi:10.1002/mnfr.201100344CrossRefGoogle Scholar
  235. You WC, Li JY, Zhang L et al (2005) Etiology and prevention of gastric cancer: a population study in high risk area of China. Chin J Digest Dis 6:149–154CrossRefGoogle Scholar
  236. Youdim KA, Shukitt-Hale B, MacKinnon SL et al (2000) Polyphenolics enhance red blood cell resistance to oxidative stress: in vitro and in vivo. Biochem Biophys Acta 1523:117–122PubMedCrossRefGoogle Scholar
  237. Zifkin M, Jin A, Ozga JA et al (2012) Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Plant Physiol 158:200–224. doi:10.1104/pp.111.180950PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute of Nutrition and Functional Foods/Horticulture Research CenterLaval UniversityQuébec CityCanada

Personalised recommendations