Skip to main content

Engineering Hydrogenases for H2 Production: Bolts and Goals

  • Chapter
  • First Online:
Book cover Microbial BioEnergy: Hydrogen Production

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 38))

Summary

Hydrogenases are efficient biological catalysts of H2 oxidation and production. Most of them are inhibited by oxygen, and a prerequisite for their use in biotechnological applications under air is to improve their oxygen tolerance. A few bacteria, however, contain hydrogenases that activate H2 even in the presence of O2. Intriguingly, molecular, kinetic and spectroscopic studies lead to assume that different mechanisms might be responsible for the resistance, depending on the enzyme type. In order to better understand the molecular bases of resistance to O2 inhibition, this chapter focuses on the hydrogenases and their reaction with O2 and examines the different strategies to lead to engineer kinetically efficient hydrogenases operating under aerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DFT:

Density function theory;

ENDOR:

Electron nuclear double resonance;

EPR:

Electron paramagnetic resonance;

EXAFS:

Extended X-Ray absorption fine structure;

Fd:

Ferredoxin;

FHL:

Formate hydrogen lyase;

FNR:

Ferredoxin NADPH reductase;

FTIR:

Fourier Transform InfraRed spectroscopy;

Hmd:

H2-forming methylenetetrahydromethanopterin dehydrogenase;

MBH:

Membrane-bound hydrogenase;

PFV:

Protein film voltammetry;

RH:

Regulatory hydrogenase;

SH:

Soluble hydrogenase;

SHE:

Standard hydrogen electrode;

WT:

Wild type;

References

  • Abo-Hashesh M, Wang R, Hallenbeck PC (2011) Metabolic engineering in dark fermentative hydrogen production; theory and practice. Bioresour Technol 102:8414–8422

    CAS  PubMed  Google Scholar 

  • Agapakis C, Ducat D, Boyle P, Wintermute E, Way J, Silver P (2010) Insulation of a synthetic hydrogen metabolism circuit in bacteria. J Biol Eng 4:3

    PubMed Central  PubMed  Google Scholar 

  • Albracht SP (1994) Nickel hydrogenases: in search of the active site. Biochim Biophys Acta 1188:167–204

    PubMed  Google Scholar 

  • Andersson SGE, Kurland CG (1999) Origins of mitochondria and hydrogenosomes. Curr Opin Microbiol 2:535–541

    CAS  PubMed  Google Scholar 

  • Antal T, Krendeleva T, Rubin A (2011) Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production. Appl Microbiol Biotechnol 89:3–15

    CAS  PubMed  Google Scholar 

  • Armstrong FA, Albracht SP (2005) [NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates. Philos Transact A Math Phys Eng Sci 363:937–954

    CAS  Google Scholar 

  • Armstrong FA, Belsey NA, Cracknell JA, Goldet G, Parkin A, Reisner E, Vincent KA, Wait AF (2009) Dynamic electrochemical investigations of hydrogen oxidation and production by enzymes and implications for future technology. Chem Soc Rev 38:36–51

    CAS  PubMed  Google Scholar 

  • Atta M, Meyer J (2000) Characterization of the gene encoding the [Fe]-hydrogenase from Megasphaera elsdenii. Biochim Biophys Acta 1476:368–371

    CAS  PubMed  Google Scholar 

  • Baffert C, Demuez M, Cournac L, Burlat B, Guigliarelli B, Bertrand P, Girbal L, Leger C (2008) Hydrogen-activating enzymes: activity does not correlate with oxygen sensitivity. Angew Chem Int Ed Engl 47:2052–2054

    CAS  PubMed  Google Scholar 

  • Bai LP, Wu XB, Jing LJ, Liu J, Long MN (2012) Hydrogen production by overexpression of hydrogenase subunit in oxygen-tolerant Klebsiella oxytoca. Int J Hydrogen Energy 37:13227–13233

    CAS  Google Scholar 

  • Bernhard M, Schwartz E, Rietdorf J, Friedrich B (1996) The Alcaligenes eutrophus membrane-bound hydrogenase gene locus encodes functions involved in maturation and electron transport coupling. J Bacteriol 178:4522–4529

    CAS  PubMed Central  PubMed  Google Scholar 

  • Black LK, Fu C, Maier RJ (1994) Sequences and characterization of hupU and hupV genes of Bradyrhizobium japonicum encoding a possible nickel-sensing complex involved in hydrogenase expression. J Bacteriol 176:7102–7106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bleijlevens B, Buhrke T, van der Linden E, Friedrich B, Albracht SP (2004) The auxiliary protein HypX provides oxygen tolerance to the soluble [NiFe]-hydrogenase of Ralstonia eutropha H16 by way of a cyanide ligand to nickel. J Biol Chem 279:46686–46691

    CAS  PubMed  Google Scholar 

  • Böck A, King PW, Blokesch M, Posewitz MC (2006) Maturation of hydrogenases. Adv Microb Physiol 51:1–71

    PubMed  Google Scholar 

  • Brentner LB, Peccia J, Zimmerman JB (2010) Challenges in developing biohydrogen as a sustainable energy source: implications for a research agenda. Environ Sci Technol 44:2243–2254

    CAS  PubMed  Google Scholar 

  • Buhrke T, Friedrich B (1998) hoxX (hypX) is a functional member of the Alcaligenes eutrophus hyp gene cluster. Arch Microbiol 170:460–463

    CAS  PubMed  Google Scholar 

  • Buhrke T, Bleijlevens B, Albracht SP, Friedrich B (2001) Involvement of hyp gene products in maturation of the H(2)-sensing [NiFe] hydrogenase of Ralstonia eutropha. J Bacteriol 183:7087–7093

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buhrke T, Lenz O, Krauss N, Friedrich B (2005) Oxygen tolerance of the H2-sensing [NiFe] hydrogenase from Ralstonia eutropha H16 is based on limited access of oxygen to the active site. J Biol Chem 280:23791–23796

    CAS  PubMed  Google Scholar 

  • Burgdorf T, Lenz O, Buhrke T, van der Linden E, Jones AK, Albracht SP, Friedrich B (2005) [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J Mol Microbiol Biotechnol 10:181–196

    CAS  PubMed  Google Scholar 

  • Bürstel I, Hummel P, Siebert E, Wisitruangsakul N, Zebger I, Friedrich B, Lenz O (2011) Probing the origin of the metabolic precursor of the CO ligand in the catalytic center of [NiFe] hydrogenase. J Biol Chem 286:44937–44944

    PubMed  Google Scholar 

  • Cammack R, Fernandez VM, Schneider K (1986) Activation and active sites of nickel-containing hydrogenases. Biochimie 68:85–91

    CAS  PubMed  Google Scholar 

  • Carepo M, Tierney DL, Brondino CD, Yang TC, Pamplona A, Telser J, Moura I, Moura JJ, Hoffman BM (2002) 17O ENDOR detection of a solvent-derived Ni-(OH(x))-Fe bridge that is lost upon activation of the hydrogenase from Desulfovibrio gigas. J Am Chem Soc 124:281–286

    CAS  PubMed  Google Scholar 

  • Carrieri D, Wawrousek K, Eckert C, Yu J, Maness P-C (2011) The role of the bidirectional hydrogenase in cyanobacteria. Bioresour Technol 102:8368–8377

    CAS  PubMed  Google Scholar 

  • Casalot L, Rousset M (2001) Maturation of the [NiFe] hydrogenases. Trends Microbiol 9:228–237

    CAS  PubMed  Google Scholar 

  • Chaudhuri A, Krasna AI (1990) Restoration of hydrogenase activity in hydrogenase-negative strains of Escherichia coli by cloned DNA fragments from Chromatium vinosum and Proteus vulgaris. J Gen Microbiol 136:1153–1160

    CAS  PubMed  Google Scholar 

  • Cohen J, Kim K, King P, Seibert M, Schulten K (2005) Finding gas diffusion pathways in proteins: application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects. Structure 13:1321–1329

    CAS  PubMed  Google Scholar 

  • Corr MJ, Murphy JA (2011) Evolution in the understanding of [Fe]-hydrogenase. Chem Soc Rev 40:2279–2292

    CAS  PubMed  Google Scholar 

  • Cournac L, Guedeney G, Peltier G, Vignais PM (2004) Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J Bacteriol 186:1737–1746

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davidson G, Choudhury SB, Gu Z, Bose K, Roseboom W, Albracht SP, Maroney MJ (2000) Structural examination of the nickel site in chromatium vinosum hydrogenase: redox state oscillations and structural changes accompanying reductive activation and CO binding. Biochemistry 39:7468–7479

    CAS  PubMed  Google Scholar 

  • De Lacey AL, Fernandez VM, Rousset M (2005) Native and mutant nickel-iron hydrogenases: unravelling structure and function. Coord Chem Rev 249:1596–1608

    Google Scholar 

  • De Lacey AL, Fernandez VM, Rousset M, Cammack R (2007) Activation and inactivation of hydrogenase function and the catalytic cycle: spectroelectrochemical studies. Chem Rev 107:4304–4330

    PubMed  Google Scholar 

  • Deckert G, Warren PV, Gaasterland T, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358

    CAS  PubMed  Google Scholar 

  • Dementin S, Belle V, Bertrand P, Guigliarelli B, Adryanczyk-Perrier G, De Lacey AL, Fernandez VM, Rousset M, Leger C (2006) Changing the ligation of the distal [4Fe4S] cluster in NiFe hydrogenase impairs inter- and intramolecular electron transfers. J Am Chem Soc 128:5209–5218

    CAS  PubMed  Google Scholar 

  • Dementin S, Leroux F, Cournac L, de Lacey AL, Volbeda A, Léger C, Burlat B, Martinez N, Champ S, Martin L, Sanganas O, Haumann M, Fernández VM, Guigliarelli B, Fontecilla-Camps JC, Rousset M (2009) Introduction of methionines in the gas channel makes [NiFe] hydrogenase aero-tolerant. J Am Chem Soc 131:10156–10164

    CAS  PubMed  Google Scholar 

  • Dementin S, Burlat B, Fourmond V, Leroux F, Liebgott PP, Abou Hamdan A, Léger C, Rousset M, Guigliarelli B, Bertrand P (2011) Rates of intra- and intermolecular electron transfers in hydrogenase deduced from steady-state activity measurements. J Am Chem Soc 133:10211–10221

    CAS  PubMed  Google Scholar 

  • Dubini A, Sargent F (2003) Assembly of Tat-dependent [NiFe] hydrogenases: identification of precursor-binding accessory proteins. FEBS Lett 549:141–146

    CAS  PubMed  Google Scholar 

  • Duche O, Elsen S, Cournac L, Colbeau A (2005) Enlarging the gas access channel to the active site renders the regulatory hydrogenase HupUV of Rhodobacter capsulatus O2 sensitive without affecting its transductory activity. FEBS J 272:3899–3908

    PubMed  Google Scholar 

  • English CM, Eckert C, Brown K, Seibert M, King PW (2009) Recombinant and in vitro expression systems for hydrogenases: new frontiers in basic and applied studies for biological and synthetic H2 production. Dalton Trans 45:9970–9978

    PubMed  Google Scholar 

  • Florin L, Tsokoglou A, Happe T (2001) A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 276:6125–6132

    CAS  PubMed  Google Scholar 

  • Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y (2007) Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107:4273–4303

    CAS  PubMed  Google Scholar 

  • Forestier M, King P, Zhang L, Posewitz M, Schwarzer S, Happe T, Ghirardi ML, Seibert M (2003) Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Eur J Biochem 270:2750–2758

    CAS  PubMed  Google Scholar 

  • Fritsch J, Scheerer P, Frielingsdorf S, Kroschinsky S, Friedrich B, Lenz O, Spahn CMT (2011) The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre. Nature 479:249–252

    CAS  PubMed  Google Scholar 

  • Garcin E, Vernede X, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC (1999) The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure 7:557–566

    CAS  PubMed  Google Scholar 

  • Germer F, Zebger I, Saggu M, Lendzian F, Schulz R, Appel J (2009) Overexpression, isolation, and spectroscopic characterization of the bidirectional [NiFe] hydrogenase from Synechocystis sp. PCC 6803. J Biol Chem 284:36462–36472

    CAS  PubMed  Google Scholar 

  • Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu J, Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71–91

    CAS  PubMed  Google Scholar 

  • Ghirardi ML, Dubini A, Yu J, Maness PC (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38:52–61

    CAS  PubMed  Google Scholar 

  • Girbal L, von Abendroth G, Winkler M, Benton PM, Meynial-Salles I, Croux C, Peters JW, Happe T, Soucaille P (2005) Homologous and heterologous overexpression in Clostridium acetobutylicum and characterization of purified clostridial and algal Fe-only hydrogenases with high specific activities. Appl Environ Microbiol 71:2777–2781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldet G, Wait AF, Cracknell JA, Vincent KA, Ludwig M, Lenz O, Friedrich B, Armstrong FA (2008) Hydrogen production under aerobic conditions by membrane-bound hydrogenases from Ralstonia species. J Am Chem Soc 130:11106–11113

    CAS  PubMed  Google Scholar 

  • Goris T, Wait AF, Saggu M, Fritsch J, Heidary N, Stein M, Zebger I, Lendzian F, Armstrong FA, Friedrich B, Lenz O (2011) A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase. Nat Chem Biol 7:310–318

    CAS  PubMed  Google Scholar 

  • Grzeszik C, Lubbers M, Reh M, Schlegel HG (1997) Genes encoding the NAD-reducing hydrogenase of Rhodococcus opacus MR11. Microbiology 143:1271–1286

    CAS  PubMed  Google Scholar 

  • Guiral M, Tron P, Belle V, Aubert C, Léger C, Guigliarelli B, Giudici-Orticoni M-T (2006) Hyperthermostable and oxygen resistant hydrogenases from a hyperthermophilic bacterium Aquifex aeolicus: physicochemical properties. Int J Hydrog Energy 31:1424–1431

    CAS  Google Scholar 

  • Häckel M, Hinz H-J, Hedwig GR (1999) Partial molar volumes of proteins: amino acid side-chain contributions derived from the partial molar volumes of some tripeptides over the temperature range 10–90 °C. Biophys Chem 82:35–50

    PubMed  Google Scholar 

  • Hallenbeck PC, Abo-Hashesh M, Ghosh D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9

    CAS  PubMed  Google Scholar 

  • Happe RP, Roseboom W, Egert G, Friedrich CG, Massanz C, Friedrich B, Albracht SP (2000) Unusual FTIR and EPR properties of the H2-activating site of the cytoplasmic NAD-reducing hydrogenase from Ralstonia eutropha. FEBS Lett 466:259–263

    CAS  PubMed  Google Scholar 

  • Henstra AM, Sipma J, Rinzema A, Stams AJM (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–206

    CAS  PubMed  Google Scholar 

  • Higuchi Y, Yagi T, Yasuoka N (1997) Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis. Structure 5:1671–1680

    CAS  PubMed  Google Scholar 

  • Hiromoto T, Ataka K, Pilak O, Vogt S, Stagni MS, Meyer-Klaucke W, Warkentin E, Thauer RK, Shima S, Ermler U (2009) The crystal structure of C176A mutated [Fe]-hydrogenase suggests an acyl-iron ligation in the active site iron complex. FEBS Lett 583:585–590

    CAS  PubMed  Google Scholar 

  • Hong G, Pachter R (2012) Inhibition of biocatalysis in [FeFe] hydrogenase by oxygen: molecular dynamics and density functional theory calculations. ACS Chem Biol 7:1268–1275

    CAS  PubMed  Google Scholar 

  • Horch M, Lauterbach L, Saggu M, Hildebrandt P, Lendzian F, Bittl R, Lenz O, Zebger I (2010) Probing the active site of an O2-tolerant NAD+−reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 by in situ EPR and FTIR spectroscopy. Angew Chem Int Ed Engl 49:8026–8029

    CAS  PubMed  Google Scholar 

  • Horch M, Lauterbach L, Lenz O, Hildebrandt P, Zebger I (2012) NAD(H)-coupled hydrogen cycling-structure-function relationships of bidirectional [NiFe] hydrogenases. FEBS Lett 586:545–556

    CAS  PubMed  Google Scholar 

  • Horner DS, Foster PG, Embley TM (2000) Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol Biol Evol 17:1695–1709

    CAS  PubMed  Google Scholar 

  • Horner DS, Heil B, Happe T, Embley TM (2002) Iron hydrogenases–ancient enzymes in modern eukaryotes. Trends Biochem Sci 27:148–153

    CAS  PubMed  Google Scholar 

  • Ihara M, Nishihara H, Yoon KS, Lenz O, Friedrich B, Nakamoto H, Kojima K, Honma D, Kamachi T, Okura I (2006) Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I. Photochem Photobiol 82:676–682

    CAS  PubMed  Google Scholar 

  • Ikeda T, Kano K (2001) An electrochemical approach to the studies of biological redox reactions and their applications to biosensors, bioreactors, and biofuel cells. J Biosci Bioeng 92:9–18

    CAS  PubMed  Google Scholar 

  • Jacobi A, Rossmann R, Bock A (1992) The hyp operon gene products are required for the maturation of catalytically active hydrogenase isoenzymes in Escherichia coli. Arch Microbiol 158:444–451

    CAS  PubMed  Google Scholar 

  • Jo JH, Lee DS, Kim J, Park JM (2009) Effect of initial glucose concentrations on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. J Microbiol Biotechnol 19:291–298

    CAS  PubMed  Google Scholar 

  • Kamp C, Silakov A, Winkler M, Reijerse EJ, Lubitz W, Happe T (2008) Isolation and first EPR characterization of the [FeFe]-hydrogenases from green algae. Biochim Biophys Acta 1777:410–416

    CAS  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    PubMed  Google Scholar 

  • Kim YH, Berry AH, Spencer DS, Stites WE (2001) Comparing the effect on protein stability of methionine oxidation versus mutagenesis: steps toward engineering oxidative resistance in proteins. Protein Eng 14:343–347

    CAS  PubMed  Google Scholar 

  • Kim JY, Jo BH, Cha HJ (2011) Production of biohydrogen by heterologous expression of oxygen-tolerant Hydrogenovibrio marinus [NiFe]-hydrogenase in Escherichia coli. J Biotechnol 155(3):312–319

    CAS  PubMed  Google Scholar 

  • Kim S, Lu D, Park S, Wang G (2012) Production of hydrogenases as biocatalysts. Int J Hydrogen Energy. http://dx.doi.org/10.1016/j.ijhydene.2012.03.033

  • King PW, Posewitz MC, Ghirardi ML, Seibert M (2006) Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J Bacteriol 188:2163–2172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kontur WS, Noguera DR, Donohue TJ (2012) Maximizing reductant flow into microbial H2 production. Curr Opin Biotechnol 23:382–389

    CAS  PubMed  Google Scholar 

  • Krassen H, Schwarze A, Friedrich B, Ataka K, Lenz O, Heberle J (2009) Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. ACS Nano 3:4055–4061

    CAS  PubMed  Google Scholar 

  • Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280:34170–34177

    CAS  PubMed  Google Scholar 

  • Kuchenreuther JM, Grady-Smith CS, Bingham AS, George SJ, Cramer SP, Swartz JR (2010) High-yield expression of heterologous [FeFe] hydrogenases in Escherichia coli. PLoS One 5:e15491

    PubMed Central  PubMed  Google Scholar 

  • Lamle SE, Albracht SP, Armstrong FA (2004) Electrochemical potential-step investigations of the aerobic interconversions of [NiFe]-hydrogenase from Allochromatium vinosum: insights into the puzzling difference between unready and ready oxidized inactive states. J Am Chem Soc 126:14899–14909

    CAS  PubMed  Google Scholar 

  • Lamle SE, Albracht SP, Armstrong FA (2005) The mechanism of activation of a [NiFe]-hydrogenase by electrons, hydrogen, and carbon monoxide. J Am Chem Soc 127:6595–6604

    CAS  PubMed  Google Scholar 

  • Leach MR, Zhang JW, Zamble DB (2007) The role of complex formation between the Escherichia coli hydrogenase accessory factors HypB and SlyD. J Biol Chem 282:16177–16186

    CAS  PubMed  Google Scholar 

  • Léger C, Dementin S, Bertrand P, Rousset M, Guigliarelli B (2004) Inhibition and aerobic inactivation kinetics of Desulfovibrio fructosovorans [NiFe] hydrogenase studied by protein film voltammetry. J Am Chem Soc 126:12162–12172

    PubMed  Google Scholar 

  • Lenz O, Gleiche A, Strack A, Friedrich B (2005) Requirements for heterologous production of a complex metalloenzyme: the membrane-bound [NiFe] hydrogenase. J Bacteriol 187:6590–6595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lenz O, Ludwig M, Schubert T, Bürstel I, Ganskow S, Goris T, Schwarze A, Friedrich B (2010) H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha. ChemPhysChem 11:1107–1119

    CAS  PubMed  Google Scholar 

  • Leroux F, Dementin S, Burlat B et al (2008) Experimental approaches to kinetics of gas diffusion in hydrogenase. Proc Natl Acad Sci U S A 105:11188–11193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liang Y, Wu X, Gan L, Xu H, Hu Z, Long M (2009) Increased biological hydrogen production by deletion of hydrogen-uptake system in photosynthetic bacteria. Microbiol Res 164:674–679

    CAS  PubMed  Google Scholar 

  • Liebgott PP, Leroux F, Burlat B, Dementin S, Baffert C, Lautier T, Fourmond V, Ceccaldi P, Cavazza C, Meynial-Salles I, Soucaille P, Fontecilla-Camps JC, Guigliarelli B, Bertrand P, Rousset M, Léger C (2010) Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase. Nat Chem Biol 6:63–70

    CAS  PubMed  Google Scholar 

  • Liebgott PP, De Lacey AL, Burlat B, Cournac L, Richaud P, Brugna M, Fernandez VM, Guigliarelli B, Rousset M, Léger C, Dementin S (2011) Original design of an oxygen-tolerant [NiFe] hydrogenase: major effect of a valine-to-cysteine mutation near the active site. J Am Chem Soc 133:986–997

    CAS  PubMed  Google Scholar 

  • Liu ZP, Hu P (2002) A density functional theory study on the active center of Fe-only hydrogenase: characterization and electronic structure of the redox states. J Am Chem Soc 124:5175–5182

    CAS  PubMed  Google Scholar 

  • Liu X, Zhu Y, Yang ST (2006) Construction and characterization of ack deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid and hydrogen production. Biotechnol Prog 22:1265–1275

    CAS  PubMed  Google Scholar 

  • Lubitz W, Reijerse E, van Gastel M (2007) [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem Rev 107:4331–4365

    CAS  PubMed  Google Scholar 

  • Lubner CE, Knoïzer P, Silva PJN, Vincent KA, Happe T, Bryant DA, Golbeck JH (2010) Wiring an [FeFe]-hydrogenase with photosystem I for light-induced hydrogen production. Biochemistry 49:10264–10266

    CAS  PubMed  Google Scholar 

  • Ludwig M, Cracknell JA, Vincent KA, Armstrong FA, Lenz O (2009a) Oxygen-tolerant H2 oxidation by membrane-bound [NiFe] hydrogenases of Ralstonia species. Coping with low level H2 in air. J Biol Chem 284:465–477

    CAS  PubMed  Google Scholar 

  • Ludwig M, Schubert T, Zebger I, Wisitruangsakul N, Saggu M, Strack A, Lenz O, Hildebrandt P, Friedrich B (2009b) Concerted action of two novel auxiliary proteins in assembly of the active site in a membrane-bound [NiFe] hydrogenase. J Biol Chem 284:2159–2168

    CAS  PubMed  Google Scholar 

  • Lukey MJ, Parkin A, Roessler MM, Murphy BJ, Harmer J, Palmer T, Sargent F, Armstrong FA (2010) How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J Biol Chem 285:3928–3938

    CAS  PubMed  Google Scholar 

  • Lukey MJ, Roessler MM, Parkin A, Evans RM, Davies RA, Lenz O, Friedrich B, Sargent F, Armstrong FA (2011) Oxygen-tolerant [NiFe]-hydrogenases: the individual and collective importance of supernumerary cysteines at the proximal Fe-S cluster. J Am Chem Soc 133:16881–16892

    CAS  PubMed  Google Scholar 

  • Lyon EJ, Shima S, Buurman G, Chowdhuri S, Batschauer A, Steinbach K, Thauer RK (2004) UV-A/blue-light inactivation of the ‘metal-free’ hydrogenase (Hmd) from methanogenic archaea. Eur J Biochem 271:195–204

    CAS  PubMed  Google Scholar 

  • Maeda T, Sanchez-Torres V, Wood TK (2007) Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:879–890

    CAS  PubMed  Google Scholar 

  • Maier T, Binder U, Bock A (1996) Analysis of the hydA locus of Escherichia coli: two genes (hydN and hypF) involved in formate and hydrogen metabolism. Arch Microbiol 165:333–341

    CAS  PubMed  Google Scholar 

  • Manyani H, Rey L, Palacios JM, Imperial J, Ruiz-Argueso T (2005) Gene products of the hupGHIJ operon are involved in maturation of the iron-sulfur subunit of the [NiFe] hydrogenase from Rhizobium leguminosarum bv. viciae. J Bacteriol 187:7018–7026

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maroti G, Fodor BD, Rakhely G, Kovacs AT, Arvani S, Kovacs KL (2003) Accessory proteins functioning selectively and pleiotropically in the biosynthesis of [NiFe] hydrogenases in Thiocapsa roseopersicina. Eur J Biochem 270:2218–2227

    CAS  PubMed  Google Scholar 

  • Maroti G, Tong Y, Yooseph S, Baden-Tillson H, Smith HO, Kovàcs KL, Frazier M, Venter JC, Xu Q (2009) Discovery of [NiFe] hydrogenase genes in metagenomic DNA: cloning and heterologous expression in Thiocapsa roseopersicina. Appl Environ Microbiol 75:5821–5830

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mason JE (2007) World energy analysis: H2 now or later? Energy Policy 35:1315–1329

    Google Scholar 

  • Matias PM, Soares CM, Saraiva LM, Coelho R, Morais J, Le Gall J, Carrondo MA (2001) [NiFe] hydrogenase from Desulfovibrio desulfuricans ATCC 27774: gene sequencing, three-dimensional structure determination and refinement at 1.8 A and modelling studies of its interaction with the tetrahaem cytochrome c3. J Biol Inorg Chem 6:63–81

    CAS  PubMed  Google Scholar 

  • McKinlay JB, Harwood CS (2010) Photobiological production of hydrogen gas as a biofuel. Curr Opin Biotechnol 21:244–251

    CAS  PubMed  Google Scholar 

  • Menon NK, Chatelus CY, Dervartanian M, Wendt JC, Shanmugam KT, Peck HD Jr, Przybyla AE (1994) Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol 176:4416–4423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer J (2007) [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci 64:1063–1084

    CAS  PubMed  Google Scholar 

  • Montet Y, Amara P, Volbeda A, Vernede X, Hatchikian EC, Field MJ, Frey M, Fontecilla-Camps JC (1997) Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nat Struct Biol 4:523–526

    CAS  PubMed  Google Scholar 

  • Morimoto K, Kimura T, Sakka K, Ohmiya K (2005) Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiol Lett 246:229–234

    CAS  PubMed  Google Scholar 

  • Morozov SV, Karyakina EE, Zorin NA, Varfolomeyev SD, Cosnier S, Karyakin AA (2002) Direct and electrically wired bioelectrocatalysis by hydrogenase from Thiocapsa roseopersicina. Bioelectrochemistry 55:169–171

    CAS  PubMed  Google Scholar 

  • Mulder DW, Shepard EM, Meuser JE, Joshi N, King PW, Posewitz MC, Broderick JB, Peters JW (2011) Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure 19:1038–1052

    CAS  PubMed  Google Scholar 

  • Nicolet Y, Fontecilla-Camps JC (2012) Structure-function relationships in [FeFe]-hydrogenase active site maturation. J Biol Chem 287:13532–13540

    CAS  PubMed  Google Scholar 

  • Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7:13–23

    CAS  PubMed  Google Scholar 

  • Nicolet Y, Lemon BJ, Fontecilla-Camps JC, Peters JW (2000) A novel FeS cluster in Fe-only hydrogenases. Trends Biochem Sci 25:138–143

    CAS  PubMed  Google Scholar 

  • Nicolet Y, Cavazza C, Fontecilla-Camps JC (2002) Fe-only hydrogenases: structure, function and evolution. J Inorg Biochem 91:1–8

    CAS  PubMed  Google Scholar 

  • Nienhaus K, Deng P, Kriegl JM, Nienhaus GU (2003) Structural dynamics of myoglobin: effect of internal cavities on ligand migration and binding Biochem 42:9647–9658

    CAS  Google Scholar 

  • Ogata H, Lubitz W, Higuchi Y (2009) [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism. Dalton Trans 37:7577–7587

    PubMed  Google Scholar 

  • Ogata H, Kellers P, Lubitz W (2010) The crystal structure of the [NiFe] hydrogenase from the photosynthetic bacterium Allochromatium vinosum: characterization of the oxidized enzyme (Ni-A State). J Mol Biol 402:428–444

    CAS  PubMed  Google Scholar 

  • Oh Y-K, Raj SM, Jung GY, Park S (2011) Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresour Technol 102:8357–8367

    CAS  PubMed  Google Scholar 

  • Okura I, Otsuka K, Nakada N, Hasumi F (1990) Regeneration of NADH and ketone hydrogenation by hydrogen with the combination of hydrogenase and alcohol dehydrogenase. Appl Biochem Biotechnol 24–25:425–430

    PubMed  Google Scholar 

  • Pandelia M-E, Fourmond V, Tron-Infossi P, Lojou E, Bertrand P, Léger C, Giudici-Orticoni M-T, Lubitz W (2010a) Membrane-bound hydrogenase I from the hyperthermophilic bacterium Aquifex aeolicus: enzyme activation, redox intermediates and oxygen tolerance. J Am Chem Soc 132:6991–7004

    CAS  PubMed  Google Scholar 

  • Pandelia M-E, Ogata H, Lubitz W (2010b) Intermediates in the catalytic cycle of [NiFe] hydrogenase: functional spectroscopy of the active site. ChemPhysChem 11:1127–1140

    CAS  PubMed  Google Scholar 

  • Pandelia M-E, Nitschke W, Infossi P, M-Trs G-O, Bill E, Lubitz W (2011) Characterization of a unique [FeS] cluster in the electron transfer chain of the oxygen tolerant [NiFe] hydrogenase from Aquifex aeolicus. Proc Natl Acad Sci U S A 108:6097–6102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pardo A, De Lacey AL, Fernandez VM, Fan HJ, Fan Y, Hall MB (2006) Density functional study of the catalytic cycle of nickel-iron [NiFe] hydrogenases and the involvement of high-spin nickel(II). J Biol Inorg Chem 11:286–306

    CAS  PubMed  Google Scholar 

  • Parish D, Benach J, Liu G, Singarapu KK, Xiao R, Acton T, Su M, Bansal S, Prestegard JH, Hunt J, Montelione GT, Szyperski T (2008) Protein chaperones Q8ZP25_SALTY from Salmonella typhimurium and HYAE_ECOLI from Escherichia coli exhibit thioredoxin-like structures despite lack of canonical thioredoxin active site sequence motif. J Struct Funct Genomics 9:41–49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parkin A, Sargent F (2012) The how and whys of aerobic hydrogen metabolism. Curr Opin Chem Biol 16:26–34

    CAS  PubMed  Google Scholar 

  • Paschos A, Bauer A, Zimmermann A, Zehelein E, Bock A (2002) HypF, a carbamoyl phosphate-converting enzyme involved in [NiFe] hydrogenase maturation. J Biol Chem 277:49945–49951

    CAS  PubMed  Google Scholar 

  • Perez-Arellano JL, Martin T, Lopez-Novoa JM, Sanchez ML, Montero A, Jimenez A (1998) BN 52021 (a platelet activating factor-receptor antagonist) decreases alveolar macrophage-mediated lung injury in experimental extrinsic allergic alveolitis. Mediators Inflamm 7:201–210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282:1853–1858

    CAS  PubMed  Google Scholar 

  • Petkun S, Shi R, Li Y, Asinas A, Munger C, Zhang L, Waclawek M, Soboh B, Sawers RG, Cygler M (2011) Structure of hydrogenase maturation protein HypF with reaction intermediates shows two active sites. Structure 19:1773–1783

    CAS  PubMed  Google Scholar 

  • Pierik AJ, Roseboom W, Happe RP, Bagley KA, Albracht SP (1999) Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of [NiFe]-hydrogenases. NiFe(CN)2CO, biology’s way to activate H2. J Biol Chem 274:3331–3337

    CAS  PubMed  Google Scholar 

  • Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Pötter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbüchel A, Friedrich B, Bowien B (2006) Genome sequence of the bioplastic-producing Knallgas bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262

    PubMed  Google Scholar 

  • Porthun A, Bernhard M, Friedrich B (2002) Expression of a functional NAD-reducing [NiFe] hydrogenase from the gram-positive Rhodococcus opacus in the gram-negative Ralstonia eutropha. Arch Microbiol 177:159–166

    CAS  PubMed  Google Scholar 

  • Posewitz MC, Smolinski SL, Kanakagiri S, Melis A, Seibert M, Ghirardi ML (2004) Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii. Plant Cell 16:2151–2163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prince RC, Kheshgi HS (2005) The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31:19–31

    CAS  PubMed  Google Scholar 

  • Ratzka J, Lauterbach L, Lenz O, Ansorge-Schumacher MB (2011) Systematic evaluation of the dihydrogen-oxidising and NAD+-reducing soluble [NiFe]-hydrogenase from Ralstonia eutropha H16 as a cofactor regeneration catalyst. Biocatal Biotransfor 29:246–252

    CAS  Google Scholar 

  • Reddie KG, Carroll KS (2008) Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol 12:746–754

    CAS  PubMed  Google Scholar 

  • Richardson AJ, Stewart CS (1990) Hydrogen transfer between Neocallimastix frontalis and Selenomonas ruminantium grown in mixed culture. In: Bélaich JP, Bruschi M, Garcia JL (eds) Microbiology and biochemistry of strict anaerobes involved in interspecies hydrogen transfer. Plenum Publishing Corporation, New York, pp 463–466

    Google Scholar 

  • Rousset M, Montet Y, Guigliarelli B, Forget N, Asso M, Bertrand P, Fontecilla-Camps JC, Hatchikian EC (1998) [3Fe-4S] to [4Fe-4S] cluster conversion in Desulfovibrio fructosovorans [NiFe] hydrogenase by site-directed mutagenesis. Proc Natl Acad Sci U S A 95:11625–11630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rupprecht J, Hankamer B, Mussgnug JH, Ananyev G, Dismukes C, Kruse O (2006) Perspectives and advances of biological H2 production in microorganisms. Appl Microbiol Biotechnol 72:442–449

    CAS  PubMed  Google Scholar 

  • Sauter M, Bohm R, Bock A (1992) Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol 6:1523–1532

    CAS  PubMed  Google Scholar 

  • Schmitz O, Boison G, Salzmann H, Bothe H, Schutz K, Wang SH, Happe T (2002) HoxE–a subunit specific for the pentameric bidirectional hydrogenase complex (HoxEFUYH) of cyanobacteria. Biochim Biophys Acta 1554:66–74

    CAS  PubMed  Google Scholar 

  • Schubert T, Lenz O, Krause E, Volkmer R, Friedrich B (2007) Chaperones specific for the membrane-bound [NiFe]-hydrogenase interact with the Tat signal peptide of the small subunit precursor in Ralstonia eutropha H16. Mol Microbiol 66:453–467

    CAS  PubMed  Google Scholar 

  • Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G (2003) Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H(2)-based lithoautotrophy and anaerobiosis. J Mol Biol 332:369–383

    CAS  PubMed  Google Scholar 

  • Self WT, Hasona A, Shanmugam KT (2004) Expression and regulation of a silent operon, hyf, coding for hydrogenase 4 isoenzyme in Escherichia coli. J Bacteriol 186:580–587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shima S (2008) Structure of [Fe]-hydrogenase and the convergent evolution of the active site of hydrogenases. Seikagaku 80:846–849

    CAS  PubMed  Google Scholar 

  • Shomura Y, Yoon K-S, Nishihara H, Higuchi Y (2011) Structural basis for a [4Fe-3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase. Nature 479:253–256

    CAS  PubMed  Google Scholar 

  • Silakov A, Wenk B, Reijerse E, Albracht SP, Lubitz W (2009) Spin distribution of the H-cluster in the H(ox)-CO state of the [FeFe] hydrogenase from Desulfovibrio desulfuricans: HYSCORE and ENDOR study of (14)N and (13)C nuclear interactions. J Biol Inorg Chem 14:301–313

    CAS  PubMed  Google Scholar 

  • Soboh B, Kuhns M, Braussemann M, Waclawek M, Muhr E, Pierik AJ, Sawers RG (2012) Evidence for an oxygen-sensitive iron-sulfur cluster in an immature large subunit species of Escherichia coli [NiFe]-hydrogenase 2. Biochem Biophys Res Commun 424:158–163

    CAS  PubMed  Google Scholar 

  • Stadler C, de Lacey AL, Montet Y, Volbeda A, Fontecilla-Camps JC, Conesa JC, Fernandez VM (2002) Density functional calculations for modeling the active site of nickel-iron hydrogenases. 2. Predictions for the unready and ready states and the corresponding activation processes. Inorg Chem 41:4424–4434

    CAS  PubMed  Google Scholar 

  • Stadtman ER (2004) Cyclic oxidation and reduction of methionine residues of proteins in antioxidant defense and cellular regulation. Arch Biochem Biophys 423:2–5

    CAS  PubMed  Google Scholar 

  • Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40:1250–1258

    CAS  PubMed  Google Scholar 

  • Stadtman ER, Moskovitz J, Berlett BS, Levine RL (2002) Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism. Mol Cell Biochem 234–235:3–9

    PubMed  Google Scholar 

  • Stein M, van Lenthe E, Baerends EJ, Lubitz W (2001) Relativistic DFT calculations of the paramagnetic intermediates of [NiFe] hydrogenase. Implications for the enzymatic mechanism. J Am Chem Soc 123:5839–5840

    CAS  PubMed  Google Scholar 

  • Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T (2009) How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc Natl Acad Sci U S A 106:17331–17336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strnad H, Lapidus A, Paces J, Ulbrich P, Vlcek C, Paces V, Haselkorn R (2010) Complete genome sequence of the photosynthetic purple nonsulfur bacterium Rhodobacter capsulatus SB 1003. J Bacteriol 192:3545–3546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun J, Hopkins RC, Jenney FE Jr, McTernan PM, Adams MWW (2010) Heterologous expression and maturation of an NADP-dependent [NiFe]-hydrogenase: a key enzyme in biofuel production. PLoS One 5:e10526

    PubMed Central  PubMed  Google Scholar 

  • Sybirna K, Antoine T, Lindberg P, Fourmond V, Rousset M, Mejean V, Bottin H (2008) Shewanella oneidensis: a new and efficient system for expression and maturation of heterologous [Fe-Fe] hydrogenase from Chlamydomonas reinhardtii. BMC Biotechnol 8:73

    PubMed Central  PubMed  Google Scholar 

  • Teixeira M, Fauque G, Moura I, Lespinat PA, Berlier Y, Prickril B, Peck HD Jr, Xavier AV, Le Gall J, Moura JJ (1987) Nickel-[iron-sulfur]-selenium-containing hydrogenases from Desulfovibrio baculatus (DSM 1743). Redox centers and catalytic properties. Eur J Biochem 167:47–58

    CAS  PubMed  Google Scholar 

  • Teixeira VH, Baptista AM, Soares CM (2006) Pathways of H2 toward the active site of [NiFe]-hydrogenase. Biophys J 91:2035–2045

    CAS  PubMed Central  PubMed  Google Scholar 

  • Topin J, Rousset M, Antonczak S, Golebiowski J (2012) Kinetics and thermodynamics of gas diffusion in a NiFe hydrogenase. Proteins 80:677–682

    CAS  PubMed  Google Scholar 

  • Tremblay P-L, Lovley DR (2012) Role of the NiFe hydrogenase Hya in oxidative stress defense in Geobacter sulfurreducens. J Bacteriol 194:2248–2253

    CAS  PubMed Central  PubMed  Google Scholar 

  • van der Zwaan JW, Coremans JM, Bouwens EC, Albracht SP (1990) Effect of 17O2 and 13CO on EPR spectra of nickel in hydrogenase from Chromatium vinosum. Biochim Biophys Acta 1041:101–110

    PubMed  Google Scholar 

  • van Gastel M, Stein M, Brecht M, Schroder O, Lendzian F, Bittl R, Ogata H, Higuchi Y, Lubitz W (2006) A single-crystal ENDOR and density functional theory study of the oxidized states of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. J Biol Inorg Chem 11:41–51

    CAS  PubMed  Google Scholar 

  • van Gastel M, Shaw JL, Blake AJ, Flores M, Schroder M, McMaster J, Lubitz W (2008) Electronic structure of a binuclear nickel complex of relevance to [NiFe] hydrogenase. Inorg Chem 47:11688–11697

    PubMed  Google Scholar 

  • Vargas WA, Weyman PD, Tong Y, Smith HO, Xu Q (2011) [NiFe] hydrogenase from Alteromonas macleodii with unusual stability in the presence of oxygen and high temperature. Appl Environ Microbiol 77:1990–1998

    PubMed Central  PubMed  Google Scholar 

  • Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    CAS  PubMed  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    CAS  PubMed  Google Scholar 

  • Vincent KA, Parkin A, Armstrong FA (2007) Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem Rev 107:4366–4413

    CAS  PubMed  Google Scholar 

  • Volbeda A, Fontecilla-Camps JC (2004) Crystallographic evidence for a CO/CO(2) tunnel gating mechanism in the bifunctional carbon monoxide dehydrogenase/acetyl coenzyme A synthase from Moorella thermoacetica. J Biol Inorg Chem 9:525–532

    CAS  PubMed  Google Scholar 

  • Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373:580–587

    CAS  PubMed  Google Scholar 

  • Volbeda A, Garcin E, Piras C, De Lacey AL, Fernandez VM, Hatchikian CE, Frey M, Fontecilla-Camps JC (1996) Structure of the [NiFe] hydrogenase active site: evidence for biologically uncommon Fe ligands. J Am Chem Soc 118:12989–12996

    CAS  Google Scholar 

  • Volbeda A, Montet Y, Vernede X, Hatchikian CE, Fontecilla-Camps JC (2002) High-resolution crystallographic analysis of Desulfovibrio fructosovorans [NiFe] hydrogenase. Int J Hydrog Energy 27:1449–1461

    CAS  Google Scholar 

  • Volbeda A, Martin L, Cavazza C, Matho M, Faber BW, Roseboom W, Albracht SP, Garcin E, Rousset M, Fontecilla-Camps JC (2005) Structural differences between the ready and unready oxidized states of [NiFe] hydrogenases. J Biol Inorg Chem 10:239–249

    CAS  PubMed  Google Scholar 

  • Volbeda A, Fontecilla-Camps JC, Sazanov L (2012) The evolutionary relationship between complex I and [NiFe]-hydrogenase. In: Sazanov L (ed) A structural perspective on respiratory Complex I: structure and function of NADH:ubiquinone oxidoreductase. Springer, Dordrecht, pp 109–121

    Google Scholar 

  • Voordouw G, Hagen WR, Kruse-Wolters KM, van Berkel-Arts A, Veeger C (1987) Purification and characterization of Desulfovibrio vulgaris (Hildenborough) hydrogenase expressed in Escherichia coli. Eur J Biochem 162:31–36

    CAS  PubMed  Google Scholar 

  • Wells MA, Mercer J, Mott RA, Pereira-Medrano AG, Burja AM, Radianingtyas H, Wright PC (2011) Engineering a non-native hydrogen production pathway into Escherichia coli via a cyanobacterial [NiFe] hydrogenase. Metab Eng 13:445–453

    CAS  PubMed  Google Scholar 

  • Weyman PD, Vargas WA, Tong Y, Yu J, Maness P-C, Smith HO, Xu Q (2011) Heterologous expression of Alteromonas macleodii and Thiocapsa roseopersicina [NiFe] hydrogenases in Synechococcus elongatus. PLoS One 6:e20126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolf I, Buhrke T, Dernedde J, Pohlmann A, Friedrich B (1998) Duplication of hyp genes involved in maturation of [NiFe] hydrogenases in Alcaligenes eutrophus H16. Arch Microbiol 170:451–459

    CAS  PubMed  Google Scholar 

  • Yacoby I, Pochekailov S, Toporik H, Ghirardi ML, King PW, Zhang S (2011) Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP+-oxidoreductase (FNR) enzymes in vitro. Proc Natl Acad Sci U S A 108:9396–9401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yacoby I, Tegler LT, Pochekailov S, Zhang S, King PW (2012) Optimized expression and purification for high-activity preparations of algal [FeFe]-hydrogenase. PLoS One 7:e35886

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao J, Song W, Cheng J, Zhang C (2010) Cloning of Enterobacter aerogenes fh1A gene and overexpression of hydrogen production. Wei Sheng Wu Xue Bao 50:736–742

    CAS  PubMed  Google Scholar 

  • Zheng H, Zhang C, Lu Y, Jiang P-X, Xing X-H (2012) Alteration of anaerobic metabolism in Escherichia coli for enhanced hydrogen production by heterologous expression of hydrogenase genes originating from Synechocystis sp. Biochem Eng J 60:81–86

    CAS  Google Scholar 

  • Zirngibl C, Van Dongen W, Schworer B, Von Bunau R, Richter M, Klein A, Thauer RK (1992) H2-forming methylenetetrahydromethanopterin dehydrogenase, a novel type of hydrogenase without iron-sulfur clusters in methanogenic archaea. Eur J Biochem 208:511–520

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Rousset .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rousset, M., Liebgott, PP. (2014). Engineering Hydrogenases for H2 Production: Bolts and Goals. In: Zannoni, D., De Philippis, R. (eds) Microbial BioEnergy: Hydrogen Production. Advances in Photosynthesis and Respiration, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8554-9_3

Download citation

Publish with us

Policies and ethics