Skip to main content

Dynamic X-Ray and Neutron Scattering: From Materials Synthesis and In-Situ Studies to Biology at High Pressure

  • Conference paper
  • First Online:
  • 752 Accesses

Abstract

X-ray and neutron scattering techniques are applied to a very wide range of condensed matter systems and problems ranging from solid state materials to biological organisms in order to study and understand their structures and phase transformations under static and dynamic compression, as well as their synthesis and function under extreme conditions. Here we illustrate the applications of several of these techniques to problems of current scientific and technological interest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Duffy TS (2005) Synchrotron facilities and the study of the Earth’s deep interior. Rep Prog Phys 68:1811–1859

    Article  CAS  Google Scholar 

  2. Liu H, Duffy T, Ehm L, Crichton W, Aoki K (2009) Advances and synergy of high-pressure sciences at synchrotron sources. J Synchrotron Radiat 16:697–698

    Article  Google Scholar 

  3. Higginbotham A, Hawreliak JA, Bringa EM, Kimminau G, Park N, Reed E, Remington BA, Wark JS (2012) Molecular dynamics simulations of ramp-compressed copper. Phys Rev B 85:024112

    Article  Google Scholar 

  4. Kalantar DH, Belak JF, Collins GW, Colvin JD, Davies HM, Eggert JH, Germann TC, Hawreliak JA, Holian BL, Kadau K, Lomdahl PS, Lorenzana HE, Meyers MA, Rosolankova K, Schneider MS, Sheppard J, Stolken JS, Wark JS (2005) Direct observation of the α-ε transition in shock-compressed iron via nanosecond X-Ray diffraction. Phys Rev Lett 95:075502

    Article  CAS  Google Scholar 

  5. Rygg JR, Eggert JH, Lazicki AE, Coppari F, Hawreliak JA, Hicks DG, Smith RF, Sorce CM, Uphaus TM, Yaakobi B, Collins GW (2012) Powder diffraction from solids in the terapascal regime. Rev Sci Instrum 83:113904

    Article  CAS  Google Scholar 

  6. Suggit MJ, Higginbotham A, Hawreliak JA, Mogni G, Kimminau G, Dunne P, Comley AJ, Park N, Remington BA, Wark JS (2012) Nanosecond white-light Laue diffraction measurements of dislocation microstructure in shock-compressed single-crystal copper. Nat Commun 3:1224

    Article  Google Scholar 

  7. Wark JS, Whitlock RR, Hauer AA, Swain JE, Salone PJ (1989) Subnanosecond x-ray diffraction from laser-shocked crystals. Phys Rev B 40:5705–5714

    Article  CAS  Google Scholar 

  8. Conn CE, Ces O, Squires AM, Mulet X, Winter R, Finet SM, Templer RH, Seddon JM (2008) A pressure-jump time-resolved X-ray diffraction study of cubic-cubic transition kinetics in monoolein. Langmuir 24:2331–2340

    Article  CAS  Google Scholar 

  9. Woenckhaus J, Köhling R, Winter R, Thiyagarajan P, Finet S (2000) High pressure-jump apparatus for kinetic studies of protein folding reactions using the small-angle x-ray scattering technique. Rev Sci Instrum 71:3895–3899

    Article  CAS  Google Scholar 

  10. Jacques SDM, di Michiel M, Beale AM, Sochi T, O’Brien MG, Espinosa-Alonso L, Weckhuyesen BM, Barnes P (2011) Dynamic X-ray diffraction computed tomography reveals real-time insight into catalyst active phase evolution. Angew Chem Int Ed 50(43):10148–10152

    Article  CAS  Google Scholar 

  11. Jacques SDM, di Michiel M, Kimber SAJ, Yang X, Cernik RJ, Beale AM, Billinge SJL (2013) Pair distribution function-computed tomography. Nat Commun 4:2536. doi:10.1038/ncomms3536

    Article  Google Scholar 

  12. Jacques SDM, Egan CK, Wilson MD, Veale MC, Seller P, Cernik RJ (2013) A laboratory system for element specific hyperspectral X-ray imaging. Analyst 138:755–759

    Article  CAS  Google Scholar 

  13. Lazzari O, Jacques SDM, Sochi T, Barnes P (2009) Reconstructive colour X-ray imaging. Analyst 134:1802–1807

    Article  CAS  Google Scholar 

  14. Middelkoop V, Boldrin P, Peel M, Buslaps T, Barnes P, Darr JA, Jacques SDM (2009) Imaging the inside of a continuous nanoceramic synthesizer under supercritical water conditions using high-energy synchrotron X-radiation. Chem Mater 21:2430–2435

    Article  CAS  Google Scholar 

  15. O’Brien MG, Jacques SDM, di Michiel M, Barnes P, Weckhuyesen BM, Beale AM (2012) Active phase evolution in single Ni/Al2O3 methanation catalyst bodies studied in real time using combined u-XRD-CT and μ-absorption-CT. Chem Sci 3:509–523

    Article  Google Scholar 

  16. Bailey IF (2003) A review of sample environments in neutron scattering. Z Kristallogr 218:84–95

    Article  CAS  Google Scholar 

  17. Goncharenko I, Loubeyre P (2005) Neutron and X-ray diffraction study of the broken symmetry phase transition in solid deuterium. Nature 435:1206–1209

    Article  CAS  Google Scholar 

  18. Wilding MC, Benmore CJ (2006) Structure of glasses and melts. Rev Mineral Geochem 63:275–312

    Article  CAS  Google Scholar 

  19. Appavou M-S, Gibrat G, Bellissent-Funel MC (2006) Influence of pressure on structure and dynamics of bovine pancreatic trypsin inhibitor (BPTI): small angle and quasi-elastic neutron scattering studies. Biochim Biophys Acta 1764:414–423

    Article  CAS  Google Scholar 

  20. Klotz S (2012) Techniques in high pressure neutron scattering. CRC Press/Taylor & Francis, Boca Raton

    Book  Google Scholar 

  21. Winter R (2002) Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases, model biomembranes and proteins in solution at high pressure. Biochim Biophys Acta 1595:160–184

    Article  CAS  Google Scholar 

  22. Shibayama M, Isono K, Okabe S, Karino T, Nagao M (2004) SANS study on pressure-induced phase separation of poly (N-isoproylacrylamide) aqueous solutions and gels. Macromolecules 37:2909–2918

    Article  CAS  Google Scholar 

  23. Bée M (2003) Localized and long-range diffusion in condensed matter: state of the art of QENS studies and future prospects. Chem Phys 292:121–141

    Article  Google Scholar 

  24. Jayaraman A (1983) Diamond anvil cell and high-pressure physical investigations. Rev Mod Phys 55:65–108

    Article  CAS  Google Scholar 

  25. Khvostanstev LG, Slesarev VN, Brazhkin VV (2004) Toroid type high-pressure device: history and prospects. High Press Res 24:371–383

    Article  Google Scholar 

  26. Liu L-G, Bassett W (1986) Elements, oxides, silicates: high-pressure phases with implications for the Earth’s interior. Oxford University Press, New York

    Google Scholar 

  27. McMillan PF (2002) New materials from high pressure experiments. Nat Mater 1:19–25

    Article  CAS  Google Scholar 

  28. McMillan PF (2003) Chemistry of materials under extreme high pressure-high temperature conditions. Chem Commun 9(8):919–923

    Article  Google Scholar 

  29. McMillan PF (2005) Pressing on: the legacy of P. W. Bridgman. Nat Mater 4:715–718

    Article  CAS  Google Scholar 

  30. Wang Y, Rivers M, Sutton S, Nishiyama N, Uchida T, Sanehira T (2009) The large-volume high-pressure facility at GSECARS: a “Swiss-army-knife” approach to synchrotron-based experimental studies. Phys Earth Planet Inter 174:270–281

    Article  CAS  Google Scholar 

  31. Hemley RJ (2010) Percy W. Bridgman’s second century. High Press Res 30:581–619

    Article  CAS  Google Scholar 

  32. Hemley RJ (1999) Reviews in mineralogy. UltraHigh Press Mineral 37:1

    Google Scholar 

  33. Bassett WA (2009) Diamond anvil cell, 50th birthday. High Press Res 29:163–186

    Article  CAS  Google Scholar 

  34. Besson J-M, Hamel G, Grima T, Nlmes RJ, Loveday JS, Hull S, Hausermann D (1992) A large volume pressure cell for high temperatures. High Press Res 8:625–630

    Article  Google Scholar 

  35. Eremets M (1996) High pressure experimental methods. Oxford University Press, Oxford

    Google Scholar 

  36. Duffy TS, Ohtani E, Rubie DC (2004) New developments in high-pressure mineral physics and applications to the Earth’s interior. Elsevier Science, Amsterdam

    Google Scholar 

  37. Hemley RJ, Mao H-k (2002) New windows on Earth and planetary interiors. Miner Mag 66:791–811

    Article  CAS  Google Scholar 

  38. Irifune T (2002) Application of synchrotron radiation and Kawai-type apparatus to various studies in high-pressure mineral physics. Miner Mag 66:769–790

    Article  CAS  Google Scholar 

  39. Katrusiak A, McMillan PF (2004) High-pressure crystallography, vol 140, NATO science series. II. Mathematics, physics and chemistry. Kluwer, Dordrecht

    Book  Google Scholar 

  40. Wilding MC, Wilson M, McMillan PF (2006) Structural studies and polymorphism in amorphous solids and liquids at high pressure. Chem Soc Rev 35:964–986

    Article  CAS  Google Scholar 

  41. Holzapfel WD, Isaacs NS (1997) High-pressure techniques in chemistry and physics: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  42. Berry A, Helsby WI, Parker BT, Hall CJ, Buksh PA, Hill A, Clague N, Hillon M, Corbett G, Clifford P, Tidbury A, Lewis RA, Cernik RJ, Barnes P, Derbyshire GE (2003) The Rapid2 X-ray detection system. Nucl Instrum Methods Phys Res A 513:260–263

    Article  CAS  Google Scholar 

  43. Cernik RJ, Barnes P, Bushnell-Wye G, Dent AJ (2004) The new materials processing beamline at the SRS Daresbury, MPW6.2. J Synchrotron Radiat 11:163–170

    Article  CAS  Google Scholar 

  44. Cernik RJ, Berry A, Helsby WI, Parker BT (2003) The Rapid2 X-ray detection system. Nucl Instrum Methods Phys Res A 513:260–263

    Article  Google Scholar 

  45. Cernik RJ, Barclay P, Khor KH, O’Neill W (2006) The manufacture of a very high precision x-ray collimator array for rapid tomographic energy dispersive diffraction imaging (TEDDI). Meas Sci Technol 17:1767–1775

    Article  Google Scholar 

  46. Seddon JM, Squires AM, Conn CE, Ces O, Heron AJ, Mulet X, Shearman GC, Templer RH (2006) Pressure-jump X-ray studies of liquid crystal transitions in lipids. Philos Trans R Soc A 364:2635–2655

    Article  CAS  Google Scholar 

  47. Brooks NJ, Gauthe BLLE, Terrill NJ, Rogers SE, Templer RH, Ces O, Seddon JM (2010) Automated high pressure cell for pressure jump x-ray diffraction. Rev Sci Instrum 81:064103

    Article  Google Scholar 

  48. Hall CJ, Barnes P, Cockroft JK, Colston SL, Häusermann D, Jacques SDM, Jupe AC, Kunz M (1998) Synchrotron radiation energy-dispersive diffraction tomography. Nucl Instrum Methods Phys Res B 140:253–257

    Article  CAS  Google Scholar 

  49. Cernik RJ, Khor KH, Hansson C (2008) X-ray colour imaging. J R Soc Interface 5:477–481

    Article  CAS  Google Scholar 

  50. Seller P, Bell S, Cernik RJ, Christodoulou C, Egan CK, Gaskin JA, Jacques SDM, Pani S, Ramsey BD, Reid C, Sellin PJ, Scuffham JW, Speller RD, Wilson MD, Veale MC (2011) Pixellated Cd(Zn)Te high-energy X-ray instrument. J Instrum 6, C12009

    Article  Google Scholar 

  51. Wark JS, Belak JF, Collins GW, Colvin JD, Davies HM, Duchaineau M, Eggert JH, Germann TC, Hawreliak JA, Higginbotham A, Holian BL, Adau K, Kalantar DH, Lomdahl PS, Lorenzana HE, Meyers MA, Remington BA, Rosolankova K, Rudd RE, Schneider MS, Sheppard J, Stolken JS (2006) Picosecond X-ray diffraction from laser-shocked copper and iron. AIP Conf Proc 845:286–291

    Article  CAS  Google Scholar 

  52. Briggs R, Daisenberger D, Salamat A, Garbarino G, Mezouar M, Wilson M, McMillan PF (2012) Melting of Sn to 1 Mbar. J Phys Conf Ser 377:012035

    Article  Google Scholar 

  53. Dewaele A, Mezouar M, Guignot N, Loubeyre P (2007) Melting of lead under high pressure studied using second-scale time-resolved x-ray diffraction. Phys Rev B 76:144106

    Article  Google Scholar 

  54. Dewaele A, Mezouar M, Guignot N, Loubeyre P (2010) High melting points of tantalum in a laser-heated diamond anvil cell. Phys Rev Lett 104:255701

    Article  Google Scholar 

  55. Taioli S, Cazorla C, Gillan M, Alfè D (2007) Melting curve of tantalum from first principles. Phys Rev B 75:214103

    Article  Google Scholar 

  56. Errandonea D, Schwager B, Ditz R, Gessmann C, Boehler R, Ross M (2001) Systematics of transition-metal melting. Phys Rev B 63:132104

    Article  Google Scholar 

  57. Schwager B, Ross M, Japel S, Boehler R (2010) Melting of Sn at high pressure: comparisons with Pb. J Chem Phys 133:084501

    Article  Google Scholar 

  58. Dai C, Hu J, Tan H (2009) Hugoniot temperatures and melting of tantalum under shock compression determined by optical pyrometry. J Appl Phys 106:043519

    Article  Google Scholar 

  59. Mabire C, Hereil P-L (2000) Shock induced polymorphic transition and melting of tin up to 53 GPa (experimental study and modelling). J Phys IV (France) 10:Pr9-749–Pr9-754

    Article  Google Scholar 

  60. Bernard S, Maillet JB (2002) First-principles calculation of the melting curve and Hugoniot of tin. Phys Rev B 66:012103

    Article  Google Scholar 

  61. Hutchins PT, Leynaud O, O’Dell LA, Smith ME, Barnes P, McMillan PF (2011) Time-resolved in situ synchrotron X-ray diffraction studies of type I silicon clathrate formation. Chem Mater 23:5160–5167

    Article  CAS  Google Scholar 

  62. Hutchins PT (2008) In situ synthesis studies of silicon clathrates. PhD thesis, University College, London

    Google Scholar 

  63. Greaves GN, Catlow CRA, Derbyshire GE, McMahon MI, Nelmes RJ, Van der Laan G (2008) Two million hours of science. Nat Mater 7:827–830

    Article  CAS  Google Scholar 

  64. Meersman F, Daniel I, Bartlett D, Winter R, Hazael R, McMillan PF (2013) High-pressure biochemistry and biophysics. Rev Miner Geochem 75:607–648

    Article  CAS  Google Scholar 

  65. Aertsen A, Meersman F, Hendrickx MEG, Vogel RF, Michiels CW (2009) Biotechnology under high pressure: applications and implications. Trends Biotechnol 27:434–441

    Article  CAS  Google Scholar 

  66. Wlodarczyk A, McMillan PF, Greenfield SA (2006) High pressure effects on anaesthesia and narcosis. Chem Soc Rev 35:890–898

    Article  CAS  Google Scholar 

  67. Squires AM, Templer RH, Seddon JM, Woenckhaus J, Winter R, Narayanan T, Finet S (2005) Kinetics and mechanism of the interconversion of inverse bicontinuous cubic mesophases. Phys Rev E 72:011502

    Article  Google Scholar 

  68. Woenckhaus J, Köhling R, Thiyagarajan P, Littrell KC, Seifert S, Royer CA, Winter R (2001) Pressure-jump small-angle X-ray scattering detected kinetics of staphylococcal nuclease folding. Biophys J 80:1518–1523

    Article  CAS  Google Scholar 

  69. Daniel RM, Dunn RV, Finney JL, Smith JC (2003) The role of dynamics in enzyme activity. Annu Rev Biophys Biomol Struct 32:69–92

    Article  CAS  Google Scholar 

  70. Appavou M-S, Busch S, Doster W, Gaspar AM, Unruh T (2011) The influence of 2 kbar pressure on the global and internal dynamics of human hemoglobin observed by quasielastic neutron scattering. Eur J Biophys 40:705–714

    Article  CAS  Google Scholar 

  71. Ortore MG, Spinozzi F, Mariani P, Pacarioaroni A, Barbosa LRS, Amenitsch H, Steinhart M, Ollovier J, Russo D (2009) Combining structure and dynamics: non-denaturing high-pressure effect on lysozyme in solution. J R Soc Interface 6:S619–S634

    Article  CAS  Google Scholar 

  72. Filabozzi A, Deriu A, Di Bari MT, Russo D, Croci S, Di Venere A (2010) Elastic incoherent neutron scattering as a probe of high pressure induced changes in protein flexibility. Biochim Biophys Acta 1804:63–67

    Article  CAS  Google Scholar 

  73. Picard A, Daniel I, Testemale D, Kieffer I, Bleuet P, Cardon H, Oger PM (2011) Monitoring microbial redox transformations of metal and metalloid elements under high pressure using in situ X-ray absorption spectroscopy. Geobiology 9:196–204

    CAS  Google Scholar 

  74. Picard A, Testemale D, Hazemann JL, Daniel I (2012) The influence of high hydrostatic pressure on bacterial dissimilatory iron reduction. Geochim Cosmochim Acta 88:120–129

    Article  CAS  Google Scholar 

  75. Bée M (1988) Quasi-elastic neutron scattering, principles and applications in solid state chemistry, biology and materials science. Adam Hilger, Bristol

    Google Scholar 

  76. Osaka N, Shibayama M, Kikuchi T, Yamamuro O (2009) Quasi-elastic neutron scattering study on water and polymer dynamics in thermo/pressure sensitive polymer solutions. J Phys Chem B 113:12870–12876

    Article  CAS  Google Scholar 

  77. Jasnin M, Moulin M, Haertlein M, Zaccai G, Tehei M (2008) Down to atomic-scale intracellular water dynamics. EMBO Rep 9:543–547

    Article  Google Scholar 

  78. Chen S-H, Teixeira J, Nicklow R (1982) Incoherent quasielastic neutron scattering from water in supercooled regime. Phys Rev A 26:3477–3482

    Article  CAS  Google Scholar 

  79. Gaspar AM (2007) Methods for analytically estimating the resolution and intensity of neutron time-of flight spectrometers. The case of the TOFTOF spectrometer. arXiv:0710.5319v1 (physics.ins-det)

    Google Scholar 

  80. Wuttke J, Ohl M, Goldammer M, Roth S, Scheider U, Lunkenheimer P, Kahn R, Rufflé B, Lechner R, Berg MA (2000) Propylene carbonate reexamined: mode-coupling beta scaling without factorization? Phys Rev E 61:2730–2740

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in PFMs group has been supported by funding from the Wolfson Trust/Royal Society, EPSRC, the Institute of Shock Physics supported by AWE, Leverhulme Trust (UK) and the Deep Life directorate of the Deep Carbon Observatory (Sloan Foundation, USA). PB has been supported by EPSRC and industry. Colleagues and co-workers who contributed to the data shown here include Drs. D. Daisenberger, A. Salamat (high-P,T studies of Sn melting), P. Hutchins (Si clathrate formation), T. Forsyth, M. Haertlein, G. Simeoni, M.-S. Appavou, R. Hazael (high-P biological studies and QENS experiments). We thank Dr. A.M. Squires for providing a high resolution version of his SAXS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul F. McMillan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

McMillan, P.F., Meersman, F., Foglia, F., Barnes, P., Jacques, S.D.M., Briggs, R. (2014). Dynamic X-Ray and Neutron Scattering: From Materials Synthesis and In-Situ Studies to Biology at High Pressure. In: Howard, J., Sparkes, H., Raithby, P., Churakov, A. (eds) The Future of Dynamic Structural Science. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8550-1_5

Download citation

Publish with us

Policies and ethics