Skip to main content

Optimization in the Development of Target Contracts

  • Chapter
  • First Online:
Optimization and Control Methods in Industrial Engineering and Construction

Abstract

Target contracts are commonly used in construction and related project industries. However, research to date has largely been qualitative, and there is no universal agreement on how any sharing of project outcomes should be allocated between contracting parties. This chapter demonstrates that by formulating the sharing problem in optimization terms, specific quantitative results can be obtained for all the various combinations of the main variables that exist in the contractual arrangements and project delivery. Such variables include the risk attitudes of the parties (risk-neutral, risk-averse), single or multiple outcomes (cost, duration, quality), single or multiple agents (contractors, consultants), and cooperative or non-cooperative behaviour. The chapter gives original, newly derived results for optimal outcome sharing arrangements. The chapter will be of interest to academics and practitioners interested in the design of target contracts and project delivery. It provides an understanding of optimal sharing arrangements within projects, broader than currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrahams A, Cullen C (1998) Project alliances in the construction industry. Aust Constr Law Newslett 62:31–36

    Google Scholar 

  2. Abudayyeh O (1994) Partnering: a team building approach to quality construction management. J Manag Eng ASCE 10(6):26–29

    Article  Google Scholar 

  3. Abu Hijleh SF, Ibbs CW (1989) Schedule-based construction incentives. J Constr Eng Manag 115(3):430–443

    Article  Google Scholar 

  4. Al-Bahar JF, Crandall KC (1990) Systematic risk management approach for construction projects. J Constr Eng Manag 116(3):533–546

    Article  Google Scholar 

  5. Al-Subhi Al-Harbi KM (1998) Sharing fractions in cost-plus-incentive-fee contracts. Int J Proj Manag 16(2):73–80

    Article  Google Scholar 

  6. ANAO (2000) Construction of the national museum of Australia and the Australian Institute of Aboriginal and Torres Strait Islander Studies. Audit Rep, Canberra, Australia, Australian National Audit Office

    Google Scholar 

  7. Ang AHS, Tang W (1975) Probability concepts in engineering planning and design, vol I. Wiley, New York

    Google Scholar 

  8. Antill JM (1970) Civil engineering management. Angus and Robertson, Sydney

    Google Scholar 

  9. Arditi D, Yasamis F (1998) Incentive/disincentive contracts: perceptions of owners and contractors. J Constr Eng Manag 124(5):361–373

    Article  Google Scholar 

  10. Aulakh P, Kotabe M, Sahay A (1996) Trust and performance in cross-border marketing partnerships: a behavioral approach. J Int Bus Stud 27(5):1005–1032

    Article  Google Scholar 

  11. Badenfelt U (2008) The selection of sharing ratios in target cost contracts. Eng Constr Architect Manag 15(1):54–65

    Article  Google Scholar 

  12. Banker RD, Thevaranjan T (1997) Accounting earnings and effort allocation. Manag Finance 23(5):56–71

    Google Scholar 

  13. Barnes M (1983) How to allocate risks in construction contracts. Int J Proj Manag 1(1):24–28

    Article  Google Scholar 

  14. Bartling B, Von Siemens FA (2010) The intensity of incentives in firms and markets: moral hazard with envious agents. Labour Econ 17(3):598–607

    Google Scholar 

  15. Basu AK, Kalyanaram G (1990) On the relative performance of linear versus nonlinear compensation plans. Int J Res Mark 7:171–179

    Google Scholar 

  16. Benjamin JR, Cornell CA (1970) Probability, statistics and decision for civil engineers. McGraw-Hill, New York

    Google Scholar 

  17. Berends TC (2000) Cost plus incentive fee contracting—experiences and structuring. Int J Proj Manag 18(3):165–171

    Article  Google Scholar 

  18. Bolton P, Dewatripont M (2005) Contract theory. MIT Press, Cambridge, Mass, London

    Google Scholar 

  19. Bower D, Ashby G, Gerald K, Smyk W (2002) Incentive mechanisms for project success. J Manag Eng ASCE 18(1):37–43

    Article  Google Scholar 

  20. Bresnen M, Marshall N (2000b) Motivation, commitment and the use of incentives in partnerships and alliances. Constr Manag Econ 18(5):587–598

    Article  Google Scholar 

  21. Broome J, Perry J (2002) How practitioners set share fractions in target cost contracts. Int J Proj Manag 20(1):59–66

    Article  Google Scholar 

  22. Carmichael DG (2000) Contracts and international project management. A. A. Balkema, Rotterdam

    Google Scholar 

  23. Carmichael DG (2002) Disputes and international projects. A A Balkema, Swets and Zeitlinger B V, Lisse

    Google Scholar 

  24. Carmichael DG (2004) Project management framework. A. A. Balkema, Rotterdam

    Google Scholar 

  25. Carmichael DG (2006) Project planning, and control. Taylor and Francis, Oxford

    Google Scholar 

  26. Chan APC, Chan DWM, Fan LCN, Lam PTI, Yeung JFY (2008) Achieving partnering success through an incentive agreement: lessons learned from an underground railway extension project in Hong Kong. J Manag Eng ASCE 24(3):128–137

    Article  Google Scholar 

  27. Clemen RT, Reilly T (2001) Making hard decisions with decision tools. Duxbury/Thomson Learning, Pacific Grove

    Google Scholar 

  28. Cook EL, Hancher DE (1990) Partnering: contracting for the future. J Manag Eng ASCE 6(4):431–446

    Article  Google Scholar 

  29. Coughlan AT, Sen SK (1989) Salesforce compensation: theory and managerial implications. Mark Sci 8(4):324–342

    Article  Google Scholar 

  30. Das T, Teng BS (2001) Trust, control, and risk in strategic alliances: an integrated framework. Organ Stud 22(2):251–283

    Article  Google Scholar 

  31. Department of Infrastructure and Transport (2011) National alliance contracting guidelines, guide to alliance contracting. www.infrastructure.gov.au. Accessed 6 March 2013

  32. Department of Treasury and Finance (2006) Project alliancing practitioners’ guide. http://www.dtf.vic.gov.au. Accessed 10 Feb 2013

  33. Eisenhardt KM (1989) Agency theory: an assessment and review. Acad Manag Rev 14(1):57–74

    Google Scholar 

  34. El-Sayegh SM (2008) Risk assessment and allocation in the UAE construction industry. Int J Proj Manag 26(4):431–438

    Article  Google Scholar 

  35. Eriksson P, Laan A (2007) Procurement effects on trust and control in client-contractor relationships. Eng Constr Architect Manag 14(4):387–399

    Article  Google Scholar 

  36. Feltham GA, Xie J (1994) Performance measure congruity and diversity in multi-task principal/agent relations. Acc Rev 69(3):429–453

    Google Scholar 

  37. Harmon KMJ (2003) Conflicts between owner and contractors, proposed intervention process. J Manag Eng 19(3):121–125

    Article  Google Scholar 

  38. Hauck AJ, Walker DHT, Hampson KD, Peters RJ (2004) Project alliancing at the national museum of Australia—collaborative process. J Constr Eng Manag 130(1):143–152

    Article  Google Scholar 

  39. Holmstrom B (1979) Moral hazard and observability. Bell J Econ 10(1):74–91

    Article  Google Scholar 

  40. Holmstrom B, Milgrom P (1987) Aggregation and linearity in the provision of intertemporal incentives. Econometrica 55(2):303–328

    Article  MathSciNet  Google Scholar 

  41. Holmstrom B, Milgrom P (1991) Multitask principal-agent analyses: incentive contracts, asset ownership, and job design. J Law Econ Organ 7:24–52

    Article  Google Scholar 

  42. Hosseinian SM (2013) Optimal outcome sharing arrangements in construction target contracts. Doctoral dissertation. The University of New South Wales, Sydney, Australia

    Google Scholar 

  43. Hosseinian SM, Carmichael DG (2013) An optimal incentive contract with a risk-neutral contractor. ASCE J Constr Eng Manag 139(8): 899–909

    Google Scholar 

  44. Hosseinian SM, Carmichael DG (2013) Optimal gainshare/painshare in alliance projects. J Oper Res Soc 64(8):1269–1278

    Google Scholar 

  45. Huang M, Chen G, Ching WK, Siu TK (2010) Principal-agent theory based risk allocation model for virtual enterprise. J Serv Sci Manag 3:241–250

    Google Scholar 

  46. Hughes D, Williams T, Ren Z (2012) Is incentivisation significant in ensuring successful partnered projects? Eng Constr Architect Manag 19(3):306–319

    Article  Google Scholar 

  47. Kamann D, Snijdets C, Tazelaar F, Welling D (2006) The ties that bind: buyer-supplier relations in the construction industry. J Purch Supply Manag 12(1):28–38

    Article  Google Scholar 

  48. Kirkwood CW (2004) Approximating risk aversion in decision analysis applications. Decis Anal 1(1):51–67

    Article  Google Scholar 

  49. Kraus S (1996) An overview of incentive contracting. Artif Intell 83(2):297–346

    Article  Google Scholar 

  50. Laffont JJ, Martimort D (2002) The theory of incentives: the principal-agent model. Princeton University Press, Princeton, N.J., Oxford

    Google Scholar 

  51. Lahdenpera P (2010) Conceptualizing a two-stage target-cost arrangement for competitive cooperation. Constr Manag Econ 28(7):783–796

    Article  Google Scholar 

  52. Lambert R (2001) Contracting theory and accounting. J Acc Econ 32(1):3–87

    Article  Google Scholar 

  53. Larson E (1997) Partnering on construction projects: a study of the relationship between partnering activities and project success. IEEE Trans Eng Manag 44(2):188–195

    Article  Google Scholar 

  54. Love PED, Davis PR, Chevis R, Edwards DJ (2011) Risk/reward compensation model for civil engineering infrastructure alliance projects. J Constr Eng Manag 137(2):127–136

    Article  Google Scholar 

  55. Love PED, Irani Z, Cheng EWL, Li H (2002) A model for supporting inter-organisational relations in the supply chain. Eng Constr Architect Manag 9(1):2–15

    Google Scholar 

  56. Lyons T, Skitmore M (2004) Project risk management in Queensland engineering construction industry: A survey. Int J Proj Manag 22(1): 51–61

    Google Scholar 

  57. Perry JG, Barnes M (2000) Target cost contracts: an analysis of the interplay between fee, target, share and price. Eng Constr Architect Manag 7(2):202–208

    Google Scholar 

  58. McGeorge D, Palmer A (2002) Construction management new directions, 2nd edn. Blackwell Science, Oxford

    Google Scholar 

  59. Petersen T (1993) The economics of organization: the principal-agent relationship. Acta Sociologica 36(3):277–293

    Google Scholar 

  60. Puddicombe MS (2009) Why contracts: evidence. J Constr Eng Manag 135(8):675–682

    Google Scholar 

  61. Rahman MM, Kumaraswamy MM (2002) Risk management trends in the construction industry: moving towards joint risk management. Eng Constr Architect Manag 9(2):131–151

    Google Scholar 

  62. Rahman MM, Kumaraswamy MM (2005) Assembling integrated project teams for joint risk management. Constr Manag Econ 23(4):365–375

    Google Scholar 

  63. Rahman MM, Kumaraswamy MM (2008) Relational contracting and teambuilding: assessing potential contractual and noncontractural incentives. J Manag Eng ASCE 24(1):48–63

    Google Scholar 

  64. Raju JS, Srinivasan V (1996) Quota-based compensation plans for multiterritory heterogeneous salesforces. Manag Sci 42(10):1454–1462

    Google Scholar 

  65. Ross J (2003) Introduction to project alliancing. http://www.pci-aus.com/files/resources/Alliancing_30Apr03_F.pdf. Accessed 15 Dec 2011

  66. Sakal MW (2005) project alliancing: a relational contracting mechanism for dynamic projects. Lean Constr J 2(1):67–79

    Google Scholar 

  67. Sappington DEM (1991) Incentives in principal-agent relationships. J Econ Perspect 5(2):45–66

    Google Scholar 

  68. Sharma A (1997) Professional as agent: knowledge asymmetry in agency exchange. Acad Manag Rev 22(3):758–799

    Google Scholar 

  69. Shavell S (1979) Risk sharing and incentives in the principal and agent relationship. Bell J Econ 10(1):55–73

    Google Scholar 

  70. Stevens DE, Thevaranjan A (2010) A moral solution to the moral hazard problem. Acc Organ Soc 35(1):125–139

    Google Scholar 

  71. Turner JR, Simister SJ (2001) Project contract management and a theory of organization. Int J Proj Manag 19(8):457–464

    Google Scholar 

  72. Uher ET, Toakley RA (1999) Risk management in the conceptual phase of a project. Int J Proj Manag 17(3):161–169

    Google Scholar 

  73. Ward S, Chapman C, Curtis B (1991) On the allocation of risk inconstruction projects. Int J Proj Manag 9(3):140–147

    Google Scholar 

  74. Ward S, Chapman C (1994) Choosing contractor payment terms. Int J Proj Manag 12(4):216–221

    Google Scholar 

  75. Weitzman ML (1980) Efficient incentive contracts. Q J Econ 44(1):719–730

    Google Scholar 

  76. Wong PSP, Cheung SO (2005) Structural equation model of trust and partnering success. J Manag Eng ASCE 21(2):70–80

    Google Scholar 

  77. Zhao H (2005) Incentive-based compensation to advertising agencies: a principal-agent approach. Int J Res Mark 22(3):255–275

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Carmichael .

Editor information

Editors and Affiliations

Appendices

Appendix A. Cooperative Owner-Contractor

Derivation of the solution to the maximization problem presented in expression (8)

Consider where both the owner and contractor are risk-averse, though the level of aversion may range from very large to being risk-neutral. Risk aversion is characterized by a concave utility function. Exponential, power and linear-exponential are candidate functions [48]. Here, the exponential utility function, because it has been popularly adopted [40, 48], is used, and for the owner and the contractor, respectively, have the form,

$$\begin{aligned} \mathrm{{U}}_\mathrm{{o}} (\mathrm{{x}}-\mathrm{{Fee}})=1-\exp \left[ {-\mathrm{{r}}_\mathrm{{o}} \left( {\mathrm{{x}}-\mathrm{{Fee}}} \right) } \right] \end{aligned}$$
(A1)
$$\begin{aligned} \mathrm{{U}}_\mathrm{{c}} (\mathrm{{Fee}})=1-\exp [-\mathrm{{r}}_\mathrm{{c}} \mathrm{{Fee}}] \end{aligned}$$
(A2)

where \(\mathrm{{r}}_\mathrm{{o}}\) and \(\mathrm{{r}}_\mathrm{{c}}\) are the owner’s and the contractor’s level of risk aversion, respectively. The shapes of the owner and contractor utility functions change with \(\mathrm{{r}}_\mathrm{{o}} \) and \(\mathrm{{r}}_\mathrm{{c}}\).

Substituting Eqs. (A1) and (A2) into expression (8), differentiating the result with respect to Fee, setting to zero, and simplifying,

$$\begin{aligned} -\mathrm{{r}}_\mathrm{{o}} \exp \left[ {-\mathrm{{r}}_\mathrm{{o}} \left( {\mathrm{{x}}-\mathrm{{Fee}}} \right) } \right] +\lambda \mathrm{{r}}_\mathrm{{c}} \exp \left[ {-\mathrm{{r}}_\mathrm{{c}} \mathrm{{Fee}}} \right] =0 \end{aligned}$$
(A3)

from which an expression for \(\lambda \) can be obtained.

Taking the derivative of Eq. (A3) with respect to x gives,

$$\begin{aligned} \mathrm{{r}}_\mathrm{{o}}^2 \left[ {1-\frac{\mathrm{{dFee}}}{\mathrm{{dx}}}} \right] \exp \left[ {-\mathrm{{r}}_\mathrm{{o}} \left( {\mathrm{{x}}-\mathrm{{Fee}}} \right) } \right] -\lambda \mathrm{{r}}_\mathrm{{c}}^2 \frac{\mathrm{{dFee}}}{\mathrm{{dx}}}\exp \left[ {-\mathrm{{r}}_\mathrm{{c}} \mathrm{{Fee}}} \right] =0 \end{aligned}$$
(A4)

Substituting \(\lambda \) from Eqs. (A3) into (A4),

$$\begin{aligned} \frac{\mathrm{{dFee}}}{\mathrm{{dx}}}=\frac{\mathrm{{r}}_\mathrm{{o}} }{\mathrm{{r}}_\mathrm{{o}} +\mathrm{{r}}_\mathrm{{c}} } \end{aligned}$$
(A5)

Integrating Eq. (A5) with respect to x gives the optimal outcome sharing arrangement of Eqs. (44) and (45).

Appendix B. Cooperative Owner-Contractor-Design Consultant (Traditional Delivery)

Derivation of the solution to the maximization problem presented in expression (12)

Consider a multiple-contract arrangement with traditional delivery, in which all parties are assumed to be risk-averse. Consistent with the above development, the parties’ utilities are described by an exponential form and for the owner and agents, respectively, are,

$$\begin{aligned} \mathrm{{U}}_\mathrm{{o}} (\mathrm{{x}}-\sum _{\mathrm{{j}}=1}^2 {\mathrm{{Fee}}_\mathrm{{j}} } )=1-\exp \left[ {-\mathrm{{r}}_\mathrm{{o}} \left( {\mathrm{{x}}-\sum _{\mathrm{{j}}=1}^2 {\mathrm{{Fee}}_\mathrm{{j}} } } \right) } \right] \end{aligned}$$
(B1)
$$\begin{aligned} \mathrm{{U}}_\mathrm{{i}} (\mathrm{{Fee}}_\mathrm{{i}} )=1-\exp [-\mathrm{{r}}_\mathrm{{i}} \mathrm{{Fee}}_\mathrm{{i}} ] \qquad \qquad \mathrm{{i}} = 1, 2 \end{aligned}$$
(B2)

where \(\mathrm{{r}}_{\mathrm{{o}}}, \mathrm{{r}}_{1}\) and \(\mathrm{{r}}_{2}\) are the levels of risk aversion of the owner, the contractor and the design consultant, respectively.

Substituting Eq. (B1) and (B2) into expression (12), differentiating the result with respect to \(\mathrm{{Fee}}_{\mathrm{{i}}}\), i \(=\) 1, 2, setting to zero, and simplifying,

$$\begin{aligned} -\mathrm{{r}}_\mathrm{{o}} \exp \left[ {-\mathrm{{r}}_\mathrm{{o}} \left( {\mathrm{{x}}-\sum _{\mathrm{{j}}=1}^2 {\mathrm{{Fee}}_\mathrm{{j}} } } \right) } \right] +\lambda _\mathrm{{i}} \mathrm{{r}}_\mathrm{{i}} \exp \left[ {-\mathrm{{r}}_{\mathrm{i}}\mathrm{{Fee}}_\mathrm{{i}} } \right] =0 \qquad \mathrm{{i}} = 1, 2 \end{aligned}$$
(B3)

from which expressions for \(\lambda _\mathrm{{i}}\), i \(=\) 1, 2 are obtained.

Differentiating Eq. (B3) with respect to x and substituting \(\lambda _\mathrm{{i}}\), i \(=\) 1, 2 from Eq. (B3),

$$\begin{aligned} \mathrm{{r}}_\mathrm{{o}} \left( {1-\frac{\mathrm{{d}} \sum _{\mathrm{{j}}=1}^2 {\mathrm{{Fee}}_\mathrm{{j}} } }{\mathrm{{dx}}}} \right) -\mathrm{{r}}_1 \left( {\frac{\mathrm{{dFee}}_1 }{\mathrm{{dx}}}} \right) =0 \end{aligned}$$
(B4)
$$\begin{aligned} \mathrm{{r}}_\mathrm{{o}} \left( {1-\frac{\mathrm{{d}} \sum _{\mathrm{{j}}=1}^2 {\mathrm{{Fee}}_\mathrm{{j}} } }{\mathrm{{dx}}}} \right) -\mathrm{{r}}_2 \left( {\frac{\mathrm{{dFee}}_2 }{\mathrm{{dx}}}} \right) =0 \end{aligned}$$
(B5)

The first terms in Eqs. (B4) and (B5) are the same. This then requires the second terms in Eqs. (B4) and (B5) to be the same. That is,

$$\begin{aligned} \mathrm{{r}}_1 \left( {\frac{\mathrm{{dFee}}_1 }{\mathrm{{dx}}}} \right) =\mathrm{{r}}_2 \left( {\frac{\mathrm{{dFee}}_2 }{\mathrm{{dx}}}} \right) \end{aligned}$$
(B6)

Substituting \(\left( {\frac{\mathrm{{dFee}}_2 }{\mathrm{{dx}}}} \right) \) from Eqs. (B6) into (B4), and integrating with respect to x provides the contractor’s optimal fee, given in Eq. (48), i \(=\) 1, and Eq. (49). Similarly substituting \(\left( {\frac{\mathrm{{dFee}}_1 }{\mathrm{{dx}}}} \right) \) from Eqs. (B6) into (B5), and integrating with respect to x provides the design consultant’s optimal fee, given in Eqs. (48), i = 2, and (50).

Appendix C. Cooperative Owner-Contractor-Design Consultant (Managing Contractor Delivery)

Derivation of the solution to the maximization problem presented in expression (18)

Using exponential utility functions, the utilities of the owner and contractor are described respectively by,

$$\begin{aligned} \mathrm{{U}}_\mathrm{{o}} (\mathrm{{x-Fee}}_1 )=1-\exp \left[ {-\mathrm{{r}}_\mathrm{{o}} \left( {\mathrm{{x-Fee}}_1 } \right) } \right] \end{aligned}$$
(C1)
$$\begin{aligned} \text {U}_\text {1} \left( {\text {Fee}_\text {1} -\mathrm{{Fee}}_2 } \right) =1-\exp \left[ {-\mathrm{{r}}_1 \left( {\text {Fee}_\text {1} -\mathrm{{Fee}}_2 } \right) } \right] \end{aligned}$$
(C2)

The design consultant’s utility is obtained from Eq. (B2), with i = 2.

Substituting Eqs. (C2) and (B2), i \(=\) 2, into expression (18), differentiating the result with respect to \(\mathrm{{Fee}}_{2}\), setting to zero, and simplifying,

$$\begin{aligned} -\lambda _1 \mathrm{{r}}_1 \exp \left[ {-\mathrm{{r}}_1 \left( {\text {Fee}_\text {1} -\mathrm{{Fee}}_2 } \right) } \right] +\lambda _2 \mathrm{{r}}_2 \exp \left[ {-\mathrm{{r}}_2 \text {Fee}_\text {2} } \right] =0 \end{aligned}$$
(C3)

from which an expression for \(\lambda _2 \) can be obtained.

Taking the derivative of Eq. (C3) with respect to x gives,

$$\begin{aligned} \lambda _1 \mathrm{{r}}_1 ^{2}\left( {\frac{\text {dFee}_\text {1} }{\mathrm{{dx}}}-\frac{\text {dFee}_\text {2} }{\mathrm{{dx}}}} \right) \exp \left[ {-\mathrm{{r}}_1 \left( {\text {Fee}_\text {1} -\mathrm{{Fee}}_2 } \right) } \right] -\lambda _2 \mathrm{{r}}_2 ^{2}\frac{\text {dFee}_\text {2} }{\mathrm{{dx}}}\exp \left[ {-\mathrm{{r}}_2 \text {Fee}_\text {2} {}} \right] =0 \end{aligned}$$
(C4)

Substituting \(\lambda _2 \) from Eqs. (C3) into (C4) gives,

$$\begin{aligned} \frac{\mathrm{{dFee}}_2 }{\mathrm{{dx}}}=\left( {\frac{\mathrm{{r}}_1 }{\mathrm{{r}}_1 +\mathrm{{r}}_2 }} \right) \frac{\mathrm{{dFee}}_1 }{\mathrm{{dx}}} \end{aligned}$$
(C5)

Substituting Eqs. (C1), (C2) and (B2), i \(=\) 2, into expression (18), and differentiating the result with respect to \(\mathrm{{Fee}}_{1}\), setting to zero, and simplifying,

$$\begin{aligned} \text {-r}_\text {o} \exp \left[ {-\mathrm{{r}}_\mathrm{{o}} \left( {\mathrm{{x-Fee}}_1 } \right) } \right] +\lambda _1 \mathrm{{r}}_1 \exp \left[ {-\mathrm{{r}}_1 \left( {\text {Fee}_\text {1} -\mathrm{{Fee}}_2 } \right) {}} \right] +\lambda _2 \frac{\mathrm{{dFee}}_2 }{\mathrm{{dFee}}_1 }\mathrm {r}_2 \exp \left[ {-\mathrm {r}_2 \text {Fee}_\text {2} } \right] =0 \end{aligned}$$
(C6)

Taking the derivative of Eq. (C6) with respect to x gives,

$$\begin{aligned} \begin{array}{l} \text {r}_\text {o} ^{2}\left( {\text {1-}\frac{\text {dFee}_\text {1} }{\mathrm{{dx}}}} \right) \exp \left[ {-\mathrm{{r}}_\mathrm{{o}} \left( {\mathrm{{x-Fee}}_1 } \right) } \right] -\lambda _1 \mathrm{{r}}_1 ^{2}\left( {\frac{\text {dFee}_\text {1} }{\mathrm{{dx}}}-\frac{\text {dFee}_\text {2} }{\mathrm{{dx}}}} \right) \exp \left[ {-\mathrm{{r}}_1 \left( {\text {Fee}_\text {1} -\mathrm{{Fee}}_2 } \right) } \right] {} \\ -\lambda _2 \frac{\mathrm{{dFee}}_2 }{\mathrm{{dFee}}_1 }\frac{\text {dFee}_\text {2} }{\mathrm{{dx}}}\mathrm{{r}}_2 ^{2}\exp \left[ {-\mathrm{{r}}_2 \text {Fee}_\text {2} } \right] =0 \\ \end{array} \end{aligned}$$
(C7)

Substituting \(\text {r}_\text {o} \exp \left[ {-\mathrm {r}_\text {o} \left( \mathrm{{x}-\mathrm {Fee}_1 } \right) } \right] \) from Eqs. (C6) into (C7), using Eq. (C5) and simplifying gives,

$$\begin{aligned} \text {r}_\text {o} \left( {1-\frac{\text {dFee}_\text {1} }{\mathrm{{dx}}}} \right) -\left( {\frac{\mathrm{{r}}_1 }{\mathrm{{r}}_1 +\mathrm{{r}}_2 }} \right) \frac{\text {dFee}_\text {1} }{\mathrm{{dx}}}\mathrm{{r}}_2 =0 \end{aligned}$$
(C8)

Integrating Eq. (C8) with respect to x provides the contractor’s optimal fee, given in Eq. (48), i \(=\) 1, and Eq. (51).

Substituting Eq. (48), i \(=\) 1, and Eqs. (51) into (C5), and integrating with respect to x, provides the design consultant’s optimal fee, given in Eq. (48), i \(=\) 2 and Eq. (52).

Appendix D. Non Cooperative Contracting, Single-Agent, Single-Outcome Case

Derivation of the solution to the maximization problem presented in expressions (27), (28) and (29)

Maximizing expression (29) with respect to e yields the optimal level of effort,

$$\begin{aligned} \mathrm{{e}}=\frac{\mathrm{{k}}}{\mathrm{{b}}}\mathrm{{n}} \end{aligned}$$
(D1)

The optimal value of F is such that expression (28) holds as an equality, that is,

$$\begin{aligned} \mathrm{{F}}=\mathrm{{MinFee-nke}}+\frac{\mathrm{{b}}}{2}\mathrm{{e}}^{2}+\frac{1}{2}\mathrm{{n}}^{2}\mathrm{{r}}_\mathrm{{c}} \sigma ^{2} \end{aligned}$$
(D2)

Substituting Eqs. (D1) and (D2) into (27), the owner’s problem can be restated as,

$$\begin{aligned} \mathop {\mathrm{{Max}}}\limits _\mathrm{{n}} {}\left\{ {\frac{\mathrm{{k}}^{2}}{\mathrm{{b}}}\mathrm{{n-MinFee}}-\frac{\mathrm{{k}}^{2}}{2\mathrm{{b}}}\mathrm{{n}}^{2}-\frac{\mathrm{{n}}^{2}\mathrm{{r}}\sigma ^{2}}{2}-\frac{1}{2}\left( {1-\mathrm{{n}}} \right) ^{2}\mathrm{{r}}_\mathrm{{o}} \sigma ^{2}} \right\} {}{} \end{aligned}$$
(D3)

Differentiating expression (D3) with respect to n and setting to zero, leads to the optimal sharing ratio,

$$\begin{aligned} \mathrm{{n}}=\frac{1}{1+{\mathrm{{r}}_\mathrm{{c}} }/{(\mathrm{{r}}_\mathrm{{o}} +{\mathrm{{k}}^{2}}/{\sigma ^{2}\mathrm{{b}}})}} \end{aligned}$$
(D4)

Substituting Eq. (D1) into (D2) leads to the optimal fixed fee,

$$\begin{aligned} \mathrm{{Fee}}=\mathrm{{MinFee}}+\frac{1}{2}\left( {\mathrm{{r}}_\mathrm{{c}} \sigma ^{2}-\frac{\mathrm{{k}}^{2}}{\mathrm{{b}}}} \right) \mathrm{{n}}^{2} \end{aligned}$$
(D5)

Special cases

Contracts with a risk-neutral contractor

For the case where the contractor is risk-neutral, while the owner is either risk-neutral or risk-averse, the optimal sharing ratio and fixed fee are obtained by setting \(\mathrm{{r}}_{\mathrm{{c}}}\) \(=\) 0,

$$\begin{aligned} \mathrm{{n}}=1 \end{aligned}$$
(D6)
$$\begin{aligned} \mathrm{{Fee}}=\mathrm{{MinFee}}-\frac{\mathrm{{k}}^{2}}{2\mathrm{{b}}} \end{aligned}$$
(D7)

Contracts with a risk-neutral owner

For the case where the owner is risk-neutral while the contactor is risk-averse (ranging to risk-neutral) the optimal sharing ratio is obtained by setting \(\mathrm{{r}}_{\mathrm{{o}}}\) \(=\) 0,

$$\begin{aligned} \mathrm{{n}}=\frac{1}{1+\mathrm{{r}}_\mathrm{{c}} \sigma ^{2}\mathrm{{b}}/{\mathrm{{k}}^{2}}} \end{aligned}$$
(D8)

And the optimal fixed fee is obtained from Eq. (D5).

Appendix E. Contracts with a Consortium of Risk-Neutral Contractors

Derivation of the solution to the maximization problem presented in expressions (32), (33) and (34)

Differentiating expression (34) with respect to \(\mathrm{{e}}_{\mathrm{{i}}}\) and setting to zero provides the optimal level of effort,

$$\begin{aligned} \mathrm{{e}}_\mathrm{{i}} =\frac{\mathrm{{k}}_\mathrm{{i}} }{\mathrm{{b}}}\mathrm{{n}}_\mathrm{{i}} \qquad \qquad \mathrm{{i}} = 1, 2 \end{aligned}$$
(E1)

The optimal value of \(\mathrm{{F}}_{\mathrm{{i}}}\) would be such that expression (33) holds as an equality, that is,

$$\begin{aligned} \mathrm{{F}}_\mathrm{{i}} =\mathrm{{MinFee}}_\mathrm{{i}} -\mathrm{{n}}_\mathrm{{i}} \sum _{\mathrm{{j}}=1}^2 {\mathrm{{k}}_\mathrm{{j}} \mathrm{{e}}_\mathrm{{j}} } +\frac{\mathrm{{b}}}{2}\mathrm{{e}}_{_\mathrm{{i}} }^2 {{\qquad \mathrm {i}}} = 1, 2 \end{aligned}$$
(E2)

Substituting Eqs. (E1) and (E2) into (32), the owner’s problem can be restated as,

$$\begin{aligned} \mathop {\mathrm{{Max}}}\limits _{\mathrm{{n}}_1 ,\mathrm{{n}}_2 } \left\{ {\mathrm{{E}}\left[ {\mathrm{{U}}_{^{\mathrm{{O}}}} } \right] \mathop {=\mathrm{{Max}}}\limits _{\mathrm{{n}}_1 ,\mathrm{{n}}_2 } \left( {\sum _{\mathrm{{i}}=1}^2 {\frac{\mathrm{{k}}_{_\mathrm{{i}} }^2 }{\mathrm{{b}}}\mathrm{{n}}_\mathrm{{i}} } } \right) -\sum _{\mathrm{{i}}=1}^2 {\left( {\mathrm{{MinFee}}_\mathrm{{i}} +\frac{\mathrm{{k}}_{_\mathrm{{i}} }^2 }{2\mathrm{{b}}}\mathrm{{n}}_{_\mathrm{{i}} }^2 } \right) } } \right\} \end{aligned}$$
(E3)

The sum of the contractors’ sharing ratios, namely \(\mathrm{{n}}_{1} + \mathrm{{n}}_{2}\), is equal to the outcome sharing ratio to the consortium, that is the proportion the consortium receives in the consortium-owner relationship. The consortium proportion of outcome share takes values in the range 0 to 1. Thus the solution of the above maximization needs to satisfy,

$$\begin{aligned} \sum _{\mathrm{{i}}=1}^2 {\mathrm{{n}}_\mathrm{{i}} } \le 1 \end{aligned}$$
(E4)

Differentiating expression (E3) with respect to \(\mathrm{{n}}_{\mathrm{{i}}}\), i \(=\) 1, 2, and setting to zero,

$$\begin{aligned} \mathrm{{n}}_\mathrm{{i}} =1 {\qquad \mathrm{{i}}} = 1, 2 \end{aligned}$$
(E5)

This result does not satisfy Eq. (E4). Accordingly, the maximum of expression (E3) lies on the line \(\mathrm{{n}}_{1} + \mathrm{{n}}_{2}\) = 1 which is the boundary of the admissible region of the maximization problem.

Introducing a Lagrange multiplier \(\lambda \), the maximization becomes,

$$\begin{aligned} \mathop {\mathrm{{Max}}}\limits _{\mathrm{{n}}_1 ,\mathrm{{n}}_2 } \left\{ {\left( {\sum _{\mathrm{{i}}=1}^2 {\frac{\mathrm{{k}}_{_\mathrm{{i}} }^2 }{\mathrm{{b}}}\mathrm{{n}}_\mathrm{{i}} } } \right) -\sum _{\mathrm{{i}}=1}^2 {\left( {\mathrm{{MinFee}}_\mathrm{{i}} +\frac{\mathrm{{k}}_{_\mathrm{{i}} }^2 }{2\mathrm{{b}}}\mathrm{{n}}_{_\mathrm{{i}} }^2 } \right) } +\lambda \left( {\sum _{\mathrm{{i}}=1}^2 {\mathrm{{n}}_\mathrm{{i}} } -1} \right) } \right\} \end{aligned}$$
(E6)

Differentiating expression (E6) with respect to \(\mathrm{{n}}_{\mathrm{{i}}}\), i \(=\) 1, 2, and \(\lambda \), setting to zero, and simplifying leads to the optimal sharing ratios of Eqs. (59) and (60).

Substituting Eq. (E1) into (E2), leads to the optimal fixed fees of Eqs. (61) and (62).

Appendix F. Contracts with a Consortium of Risk-Averse Contractors

Derivation of the solution to the maximization problem presented in expressions (32), (35) and (36)

Differentiating Eq. (36) with respect to \(\mathrm{{e}}_{\mathrm{{i}}}\) and setting to zero provides the optimal level of effort, and this leads to Eq. (E1).

The optimal value of \(\mathrm{{F}}_{\mathrm{{i}}}\) would be such that expression (35) holds as an equality, that is,

$$\begin{aligned} \mathrm{{F}}_{_\mathrm{{i}} } = \mathrm{{MinFee}}_\mathrm{{i}} -\mathrm{{n}}_\mathrm{{i}} \sum _{\mathrm{{j}}=1}^2 {\mathrm{{k}}_\mathrm{{j}} \mathrm{{e}}_\mathrm{{j}} } +\frac{\mathrm{{b}}}{2}\mathrm{{e}}_{_\mathrm{{i}} }^2 +\frac{1}{2}\mathrm{{n}}_{_\mathrm{{i}} }^2 \mathrm{{r}}_\mathrm{{i}} \sigma ^{2} {\quad \mathrm{{i}}} = 1, 2 \end{aligned}$$
(F1)

Substituting Eqs. (E1) and (F1) into expression (32), the owner’s problem can be restated as,

$$\begin{aligned} \mathop {\mathrm{{Max}}}\limits _{\mathrm{{n}}_1 ,\mathrm{{n}}_2 } \left\{ {\left( {\sum _{\mathrm{{i}}=1}^2 {\frac{\mathrm{{k}}_\mathrm{{i}}^2 }{\mathrm{{b}}}\mathrm{{n}}_\mathrm{{i}} } } \right) -\sum _{\mathrm{{i}}=1}^2 {\left( {\mathrm{{MinFee}}_\mathrm{{i}} +\frac{\mathrm{{k}}_\mathrm{{i}}^2 }{2\mathrm{{b}}}\mathrm{{n}}_\mathrm{{i}}^2 +\frac{1}{2}\mathrm{{n}}_\mathrm{{i}}^2 \mathrm{{r}}_\mathrm{{i}} \sigma ^{2}} \right) } } \right\} \end{aligned}$$
(F2)

Differentiating expression (F2) with respect to \(\mathrm{{n}}_{\mathrm{{i}}}\), i \(=\) 1, 2, and setting to zero, leads to the optimal sharing ratio of Eq. (63).

Substituting Eq. (E1) into (F1), leads to the optimal fixed components of Eqs. (64) and (65).

Where the contractors’ levels of risk aversion approach zero and the contractors become risk-neutral, the solutions of expression (F2) lie on the line \(\mathrm{{n}}_{1} + \mathrm{{n}}_{2}\) = 1, and the optimal sharing ratios are obtained by Eqs. (59) and (60).

Appendix G. Contracts with Multiple Outcomes

Derivation of the solution to the maximization problem presented in expressions (41), (42) and (43)

Maximizing expression (43) with respect to e yields the optimal effort levels,

$$\begin{aligned} \mathbf{{e}}=\mathbf{{B}}^{-1}\mathbf{{K}}^{\mathrm{{T}}}\mathbf{{n}} \end{aligned}$$
(G1)

where the superscript \(-\)1 denotes the inverse of the matrix.

The optimal value of F is such that expression (42) holds as an equality, that is,

$$\begin{aligned} \mathrm{{F}}=\mathrm{{MinFee}}-\mathbf{{n}}^{\mathrm{{T}}}\mathbf{{Ke}}+\frac{1}{2}\mathbf{{e}}^{\mathrm{{T}}}\mathbf{{Be}}+\frac{1}{2}\mathrm{{r}}\mathbf{{n}}^{\mathrm{{T}}}\mathbf{{Pn}} \end{aligned}$$
(G2)

Substituting Eqs. (G1) and (G2) into expression (41), the owner’s problem can be restated as,

$$\begin{aligned} \mathop {\mathrm{{Max}}}\limits _\mathbf{{n}} \mathbf{{q}}^{\mathrm{{T}}}\mathbf{{KB}}^{-1}\mathbf{{K}}^{\mathrm{{T}}}\mathbf{{n}}-\mathrm{{MinFee}}-\frac{1}{2}\mathbf{{\mathbf{{n}}}}^{\mathrm{{T}}}\mathbf{{KB}}^{-1}\mathbf{{K}}^{\mathrm{{T}}}\mathbf{{n}}-\frac{1}{2}\mathrm{{r}}\mathbf{{n}}^{\mathrm{{T}}}\mathbf{{Pn}} \end{aligned}$$
(G3)

Differentiating expression (G3) with respect to n and setting to zero leads,

$$\begin{aligned} \mathbf{{KB}}^{-1}\mathbf{{K}}^{\mathrm{{T}}}\mathbf{{q}}-\mathbf{{KB}}^{-1}\mathbf{{K}}^{\mathrm{{T}}}\mathbf{{n}}-\mathrm{{r}} \mathbf{{Pn}}=0 \end{aligned}$$
(G4)

Multiplying by (KB \(^{-1}\mathbf{{K}}^{\mathrm{{T}}})^{-1}\) leads to the optimal n of Eq. (66). Substituting Eq. (G1) into (G2) leads to the optimal fixed fee of Eq. (67).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hosseinian, S.M., Carmichael, D.G. (2014). Optimization in the Development of Target Contracts. In: Xu, H., Wang, X. (eds) Optimization and Control Methods in Industrial Engineering and Construction. Intelligent Systems, Control and Automation: Science and Engineering, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8044-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8044-5_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8043-8

  • Online ISBN: 978-94-017-8044-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics