Skip to main content

Histamine in the Neural and Cancer Stem Cell Niches

Part of the Stem Cells and Cancer Stem Cells book series (STEM,volume 12)

Abstract

Neural stem cells (NSCs) present in the subventricular zone and in the subgranular zone of the adult brain possess proliferative and self-renewal capacities and are able to generate neurons and glial cells. Under physiologic conditions, these properties are tightly regulated at the neurogenic niche consisting of soluble factors and cell-to-cell interactions that control signaling pathways and genetic expression related to the stemness state. The deregulation of these pathways has been suggested to promote the neoplasic transformation of NSCs into cancer stem cells (CSCs) and the formation of gliomas. In fact, NSCs and CSCs share several characteristics including cell surface receptors and intracellular signalling pathways, several cell markers of immaturity, and affinity for blood vessels. Therefore, understanding the cellular and molecular pathways controlling NSCs properties will shed light on brain cancer development and progression. Among soluble factors able to modulate both NSCs and tumoral cells, histamine is raising attention due to its ability to modulate proliferation, differentiation, and survival of both cell types. This may suggest that the modulation of the histaminergic system could emerge as a novel approach to promote brain repair by neurogenesis stimulation and to hamper the development of brain tumors. In this chapter we discuss recent findings regarding the role of histamine in both neurogenesis and tumorigenesis.

Keywords

  • Stem Cell
  • Glial Fibrillary Acidic Protein
  • Cancer Stem Cell
  • Dentate Gyrus
  • Ependymal Cell

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-017-8032-2_1
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-94-017-8032-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2

References

  • Abel TW, Clark C, Bierie B, Chytil A, Aakre M, Gorska A et al (2009) GFAP-Cre-mediated activation of oncogenic K-ras results in expansion of the subventricular zone and infiltrating glioma. Mol Cancer Res 7:645–653

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Adams WJ, Lawson JA, Morris DL (1994) Cimetidine inhibits in vivo growth of human colon cancer and reverses histamine stimulated in vitro and in vivo growth. Gut 35:1632–1636

    CAS  PubMed  CrossRef  Google Scholar 

  • Agasse F, Bernardino L, Silva B, Ferreira R, Grade S, Malva JO (2008) Response to histamine allows the functional identification of neuronal progenitors, neurons, astrocytes, and immature cells in subventricular zone cell cultures. Rejuvenation Res 11:187–200

    CAS  PubMed  CrossRef  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    CAS  PubMed  CrossRef  Google Scholar 

  • Bernardino L, Eiriz MF, Santos T, Xapelli S, Grade S, Rosa AI et al (2012) Histamine stimulates neurogenesis in the rodent subventricular zone. Stem Cells 30:773–784

    CAS  PubMed  CrossRef  Google Scholar 

  • Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW et al (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol 63:637–672

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG et al (2012a) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Chen J, McKay RM, Parada LF (2012b) Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 149:36–47

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Cianchi F, Cortesini C, Schiavone N, Perna F, Magnelli L, Fanti E et al (2005) The role of cyclooxygenase-2 in mediating the effects of histamine on cell proliferation and vascular endothelial growth factor production in colorectal cancer. Clin Cancer Res 11:6807–6815

    CAS  PubMed  CrossRef  Google Scholar 

  • Clarke L, van der Kooy D (2011) The adult mouse dentate gyrus contains populations of committed progenitor cells that are distinct from subependymal zone neural stem cells. Stem Cells 29:1448–1458

    CAS  PubMed  Google Scholar 

  • Cricco G, Martin G, Medina V, Nunez M, Mohamad N, Croci M et al (2006) Histamine inhibits cell proliferation and modulates the expression of Bcl-2 family proteins via the H2 receptor in human pancreatic cancer cells. Anticancer Res 26:4443–4450

    CAS  PubMed  Google Scholar 

  • Cricco GP, Mohamad NA, Sambuco LA, Genre F, Croci M, Gutierrez AS et al (2008) Histamine regulates pancreatic carcinoma cell growth through H3 and H4 receptors. Inflamm Res 57(Suppl 1):S23–S24

    CAS  PubMed  CrossRef  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    CAS  PubMed  CrossRef  Google Scholar 

  • Falus A, Pos Z, Darvas Z (2010) Histamine in normal and malignant cell proliferation. Adv Exp Med Biol 709:109–123

    CAS  PubMed  CrossRef  Google Scholar 

  • Francis H, DeMorrow S, Venter J, Onori P, White M, Gaudio E et al (2012) Inhibition of histidine decarboxylase ablates the autocrine tumorigenic effects of histamine in human cholangiocarcinoma. Gut 61:753–764

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Fuentealba LC, Obernier K, Alvarez-Buylla A (2012) Adult neural stem cells bridge their niche. Cell Stem Cell 10:698–708

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Fukuda M, Kusama K, Sakashita H (2008) Cimetidine inhibits salivary gland tumor cell adhesion to neural cells and induces apoptosis by blocking NCAM expression. BMC Cancer 8:376–389

    PubMed Central  PubMed  CrossRef  Google Scholar 

  • Galan-Moya EM, Le Guelte A, Lima Fernandes E, Thirant C, Dwyer J, Bidere N et al (2011) Secreted factors from brain endothelial cells maintain glioblastoma stem-like cell expansion through the mTOR pathway. EMBO Rep 12:470–476

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    CAS  PubMed  CrossRef  Google Scholar 

  • Gil-Perotin S, Marin-Husstege M, Li J, Soriano-Navarro M, Zindy F, Roussel MF et al (2006) Loss of p53 induces changes in the behavior of subventricular zone cells: implication for the genesis of glial tumors. J Neurosci 26:1107–1116

    CAS  PubMed  CrossRef  Google Scholar 

  • Hernandez-Angeles A, Soria-Jasso LE, Ortega A, Arias-Montano JA (2001) Histamine H1 receptor activation stimulates mitogenesis in human astrocytoma U373 MG cells. J Neurooncol 55:81–89

    CAS  PubMed  CrossRef  Google Scholar 

  • Hovinga KE, Shimizu F, Wang R, Panagiotakos G, Van Der Heijden M, Moayedpardazi H et al (2010) Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells 28:1019–1029

    CAS  PubMed  CrossRef  Google Scholar 

  • Ihrie RA, Alvarez-Buylla A (2011) Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron 70:674–686

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Jacques TS, Swales A, Brzozowski MJ, Henriquez NV, Linehan JM, Mirzadeh Z et al (2010) Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. EMBO J 29:222–235

    CAS  PubMed  CrossRef  Google Scholar 

  • Jiang CG, Liu FR, Yu M, Li JB, Xu HM (2010) Cimetidine induces apoptosis in gastric cancer cells in vitro and inhibits tumor growth in vivo. Oncol Rep 23:693–700

    CAS  PubMed  CrossRef  Google Scholar 

  • Johansson M, Henriksson R, Bergenheim AT, Koskinen LO (2000) Interleukin-2 and histamine in combination inhibit tumour growth and angiogenesis in malignant glioma. Br J Cancer 83:826–832

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Kanbayashi T, Kodama T, Kondo H, Satoh S, Inoue Y, Chiba S et al (2009) CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome. Sleep 32:181–187

    PubMed  Google Scholar 

  • Lathia JD, Gallagher J, Heddleston JM, Wang J, Eyler CE, Macswords J et al (2010) Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6:421–432

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Lefranc F, Yeaton P, Brotchi J, Kiss R (2006) Cimetidine, an unexpected anti-tumor agent, and its potential for the treatment of glioblastoma (review). Int J Oncol 28:1021–1030

    CAS  PubMed  Google Scholar 

  • Malaviya R, Uckun FM (2000) Histamine as an autocrine regulator of leukemic cell proliferation. Leuk Lymphoma 36:367–373

    CAS  PubMed  CrossRef  Google Scholar 

  • Mannello F, Medda V, Tonti GA (2011) Hypoxia and neural stem cells: from invertebrates to brain cancer stem cells. Int J Dev Biol 55:569–581

    CAS  PubMed  CrossRef  Google Scholar 

  • Massari NA, Medina VA, Martinel Lamas DJ, Cricco GP, Croci M, Sambuco L et al (2011) Role of H4 receptor in histamine-mediated responses in human melanoma. Melanoma Res 21:395–404

    CAS  PubMed  CrossRef  Google Scholar 

  • Matsumoto S, Imaeda Y, Umemoto S, Kobayashi K, Suzuki H, Okamoto T (2002) Cimetidine increases survival of colorectal cancer patients with high levels of sialyl Lewis-X and sialyl Lewis-A epitope expression on tumour cells. Br J Cancer 86:161–167

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Medina V, Croci M, Crescenti E, Mohamad N, Sanchez-Jimenez F, Massari N et al (2008) The role of histamine in human mammary carcinogenesis: H3 and H4 receptors as potential therapeutic targets for breast cancer treatment. Cancer Biol Ther 7:28–35

    CAS  PubMed  CrossRef  Google Scholar 

  • Medina VA, Brenzoni PG, Lamas DJ, Massari N, Mondillo C, Nunez MA et al (2011) Role of histamine H4 receptor in breast cancer cell proliferation. Front Biosci (Elite Ed) 3:1042–1060

    Google Scholar 

  • Meng F, Han Y, Staloch D, Francis T, Stokes A, Francis H (2011) The H4 histamine receptor agonist, clobenpropit, suppresses human cholangiocarcinoma progression by disruption of epithelial mesenchymal transition and tumor metastasis. Hepatology 54:1718–1728

    CAS  PubMed  CrossRef  Google Scholar 

  • Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Molina-Hernandez A, Velasco I (2008) Histamine induces neural stem cell proliferation and neuronal differentiation by activation of distinct histamine receptors. J Neurochem 106:706–717

    CAS  PubMed  CrossRef  Google Scholar 

  • Mu Y, Lee SW, Gage FH (2010) Signaling in adult neurogenesis. Curr Opin Neurobiol 20:416–423

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Panula P, Lintunen M, Karlstedt K (2000) Histamine in brain development and tumors. Semin Cancer Biol 10:11–14

    CAS  PubMed  CrossRef  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    CAS  PubMed  CrossRef  Google Scholar 

  • Rodriguez-Martinez G, Velasco I, Garcia-Lopez G, Solis KH, Flores-Herrera H, Diaz NF et al (2012) Histamine is required during neural stem cell proliferation to increase neuron differentiation. Neuroscience 216:10–17

    CAS  PubMed  CrossRef  Google Scholar 

  • Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, Wong M et al (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478:382–386

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Soya A, Song YH, Kodama T, Honda Y, Fujiki N, Nishino S (2008) CSF histamine levels in rats reflect the central histamine neurotransmission. Neurosci Lett 430:224–229

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Stoyanov E, Uddin M, Mankuta D, Dubinett SM, Levi-Schaffer F (2012) Mast cells and histamine enhance the proliferation of non-small cell lung cancer cells. Lung Cancer 75:38–44

    PubMed  CrossRef  Google Scholar 

  • Szincsak N, Hegyesi H, Hunyadi J, Falus A, Juhasz I (2002a) Different h2 receptor antihistamines dissimilarly retard the growth of xenografted human melanoma cells in immunodeficient mice. Cell Biol Int 26:833–836

    CAS  PubMed  CrossRef  Google Scholar 

  • Szincsak N, Hegyesi H, Hunyadi J, Martin G, Lazar-Molnar E, Kovacs P et al (2002b) Cimetidine and a tamoxifen derivate reduce tumour formation in SCID mice xenotransplanted with a human melanoma cell line. Melanoma Res 12:231–240

    CAS  PubMed  CrossRef  Google Scholar 

  • Tomita K, Nakamura E, Okabe S (2005) Histamine regulates growth of malignant melanoma implants via H2 receptors in mice. Inflammopharmacology 13:281–289

    CAS  PubMed  CrossRef  Google Scholar 

  • Vaysse L, Labie C, Canolle B, Jozan S, Beduer A, Arnauduc F et al (2012) Adult human progenitor cells from the temporal lobe: another source of neuronal cells. Brain Inj 26:1636–1645

    CAS  PubMed  CrossRef  Google Scholar 

  • Yang XD, Ai W, Asfaha S, Bhagat G, Friedman RA, Jin G et al (2011) Histamine deficiency promotes inflammation-associated carcinogenesis through reduced myeloid maturation and accumulation of CD11b + Ly6G + immature myeloid cells. Nat Med 17:87–95

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  • Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgements

 This work was supported by FCT Portugal and FEDER, PTDC/SAU-NEU/104415/2008 and PTDC/SAU-NEU/101783/2008, grant no. 96542, from the Calouste Gulbenkian Foundation and L’Oréal-UNESCO Portugal for Women in Science. Maria Francisca Eiriz acknowledges the MIT-Portugal Program, focus in Bioengineering.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabienne Agasse or Liliana Bernardino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Eiriz, M.F., Malva, J.O., Agasse, F., Bernardino, L. (2014). Histamine in the Neural and Cancer Stem Cell Niches. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 12. Stem Cells and Cancer Stem Cells, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8032-2_1

Download citation