Skip to main content

Repairing the Stroke-Damaged Brain: From Neural Stem Cells to Tissue Engineering

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 12

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 12))

  • 1636 Accesses

Abstract

Stroke remains the main cause of adult disability with only very limited treatment options. Cell therapy is gradually emerging from the bench to the bedside, but the specific conditions under which administered cells can be effective remain to be defined. This translation needs to be seen in the context of endogenous repair processes which to some extent involve endogenous neural stem cells which reside in the sub-ependymal zone bordering the lateral ventricles and the sub-granular zone of the hippocampus, as well as local changes involving astrocytes, microglia and endothelial cells. The integration of cells with biomaterials also opens the opportunity for considering a replacement of lost tissue that leaves a cavity in the infarct area. Together, these approaches present new perspectives to repair some damage caused by stroke and eventually to improve outcome of patients for a better quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfieri A, Srivastava S, Siow RC, Modo M, Fraser PA, Mann GE (2011) Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke. J Physiol 589:4125–4136

    Article  CAS  PubMed  Google Scholar 

  • Beck H, Acker T, Wiessner C, Allegrini PR, Plate KH (2000) Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the rat. Am J Pathol 157:1473–1483

    Article  CAS  PubMed  Google Scholar 

  • Bible E, Chau DY, Alexander MR, Price J, Shakesheff KM, Modo M (2009a) Attachment of stem cells to scaffold particles for intra-cerebral transplantation. Nat Protoc 4:1440–1453

    Article  CAS  PubMed  Google Scholar 

  • Bible E, Chau DY, Alexander MR, Price J, Shakesheff KM, Modo M (2009b) The support of neural stem cells transplanted into stroke-induced brain cavities by PLGA particles. Biomaterials 30:2985–2994

    Article  CAS  PubMed  Google Scholar 

  • Bible E, Dell’Acqua F, Solanky B, Balducci A, Crapo PM, Badylak SF, Ahrens ET, Modo M (2012a) Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by (19)F- and diffusion-MRI. Biomaterials 33:2858–2871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bible E, Qutachi O, Chau DY, Alexander MR, Shakesheff KM, Modo M (2012b) Neo-vascularization of the stroke cavity by implantation of human neural stem cells on VEGF-releasing PLGA microparticles. Biomaterials 33:7435–7446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borlongan CV, Saporta S, Poulos SG, Othberg A, Sanberg PR (1998) Viability and survival of hNT neurons determine degree of functional recovery in grafted ischemic rats. Neuroreport 9:2837–2842

    Article  CAS  PubMed  Google Scholar 

  • Carmichael ST (2003) Plasticity of cortical projections after stroke. Neuroscientist 9:64–75

    Article  PubMed  Google Scholar 

  • Chopp M, Steinberg GK, Kondziolka D, Lu M, Bliss TM, Li Y, Hess DC, Borlongan CV (2009) Who’s in favor of translational cell therapy for stroke: STEPS forward please? Cell Transplant 18:691–693

    Article  PubMed  Google Scholar 

  • Crum WR, Giampietro VP, Smith EJ, Gorenkova N, Stroemer RP, Modo M (2013) A comparison of automated anatomical-behavioural mapping methods in a rodent model of stroke. J Neurosci Methods 218(2):170–183

    Article  PubMed Central  PubMed  Google Scholar 

  • Cui L, Qu H, Xiao T, Zhao M, Jolkkonen J, Zhao C (2013) Stromal cell-derived factor-1 and its receptor CXCR4 in adult neurogenesis after cerebral ischemia. Restor Neurol Neurosci 31:239–251

    CAS  PubMed  Google Scholar 

  • Cumberland Consensus Working G, Cheeran B, Cohen L, Dobkin B, Ford G, Greenwood R, Howard D, Husain M, Macleod M, Nudo R, Rothwell J, Rudd A, Teo J, Ward N, Wolf S (2009) The future of restorative neurosciences in stroke: driving the translational research pipeline from basic science to rehabilitation of people after stroke. Neurorehabil Neural Repair 23:97–107

    Article  Google Scholar 

  • Danilov AI, Kokaia Z, Lindvall O (2012) Ectopic ependymal cells in striatum accompany neurogenesis in a rat model of stroke. Neuroscience 214:159–170

    Article  CAS  PubMed  Google Scholar 

  • Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A, Pluchino S (2013). The stem cell secretome and its role in brain repair. Biochimie 95(12):2271–2285

    Google Scholar 

  • Emgard M, Hallin U, Karlsson J, Bahr BA, Brundin P, Blomgren K (2003) Both apoptosis and necrosis occur early after intracerebral grafting of ventral mesencephalic tissue: a role for protease activation. J Neurochem 86:1223–1232

    Article  CAS  PubMed  Google Scholar 

  • Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2013) Executive summary: heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation 127:143–152

    Article  PubMed  Google Scholar 

  • Grabowski M, Johansson BB, Brundin P (1994) Survival of fetal neocortical grafts implanted in brain infarcts of adult rats: the influence of postlesion time and age of donor tissue. Exp Neurol 127:126–136

    Article  CAS  PubMed  Google Scholar 

  • Horie N, Pereira MP, Niizuma K, Sun G, Keren-Gill H, Encarnacion A, Shamloo M, Hamilton SA, Jiang K, Huhn S, Palmer TD, Bliss TM, Steinberg GK (2011) Transplanted stem cell-secreted VEGF effects post-stroke recovery, inflammation, and vascular repair. Stem Cells 29(2):274–285

    Article  CAS  PubMed  Google Scholar 

  • Katsman D, Zheng J, Spinelli K, Carmichael ST (2003) Tissue microenvironments within functional cortical subdivisions adjacent to focal stroke. J Cereb Blood Flow Metab 23:997–1009

    Article  PubMed  Google Scholar 

  • Kazanis I (2009) The subependymal zone neurogenic niche: a beating heart in the centre of the brain: how plastic is adult neurogenesis? Opportunities for therapy and questions to be addressed. Brain 132:2909–2921

    Article  PubMed  Google Scholar 

  • Kazanis I, Gorenkova N, Zhao JW, Franklin RJ, Modo M, Ffrench-Constant C (2013) The late response of rat subependymal zone stem and progenitor cells to stroke is restricted to directly affected areas of their niche. Exp Neurol 248:387–397

    Article  PubMed Central  PubMed  Google Scholar 

  • Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J, Jannetta P, DeCesare S, Elder EM, McGrogan M, Reitman MA, Bynum L (2000) Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55:565–569

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Arcidiacono JA, Bilek AM, Wille JJ, Hamill CA, Wonnacott KM, Wells MA, Oh SS (2010) Considerations for tissue-engineered and regenerative medicine product development prior to clinical trials in the United States. Tissue Eng Part B Rev 16:41–54

    Article  CAS  PubMed  Google Scholar 

  • Liman TG, Endres M (2012) New vessels after stroke: postischemic neovascularization and regeneration. Cerebrovasc Dis 33:492–499

    Article  CAS  PubMed  Google Scholar 

  • Marone M, Quinones-Jenab V, Meiners S, Nowakowski RS, Ho SY, Geller HM (1995) An immortalized mouse neuroepithelial cell line with neuronal and glial phenotypes. Dev Neurosci 17:311–323

    Article  CAS  PubMed  Google Scholar 

  • Modo M, Stroemer RP, Tang E, Patel S, Hodges H (2002) Effects of implantation site of stem cell grafts on behavioral recovery from stroke damage. Stroke 33:2270–2278

    Article  PubMed  Google Scholar 

  • Orive G, Anitua E, Pedraz JL, Emerich DF (2009) Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci 10:682–692

    Article  CAS  PubMed  Google Scholar 

  • Pakulska MM, Ballios BG, Shoichet MS (2012) Injectable hydrogels for central nervous system therapy. Biomed Mater 7:024101

    Article  PubMed  Google Scholar 

  • Perez RG, Lewis RM (1992) Regional distribution of DARPP-32 (dopamine- and adenosine 3',5'-monophosphate-regulated phosphoprotein of Mr = 32,000) mRNA in mouse brain. J Comp Neurol 318:304–315

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Crivellato E (2012) “Sprouting angiogenesis”, a reappraisal. Dev Biol 372:157–165

    Article  CAS  PubMed  Google Scholar 

  • Rosser AE, Barker RA, Armstrong RJ, Elneil S, Jain M, Hurelbrink CB, Prentice A, Carne C, Thornton S, Hutchinson H, Dunnett SB (2003) Staging and preparation of human fetal striatal tissue for neural transplantation in Huntington’s disease. Cell Transplant 12:679–686

    CAS  PubMed  Google Scholar 

  • Saver JL, Fonarow GC, Smith EE, Reeves MJ, Grau-Sepulveda MV, Pan W, Olson DM, Hernandez AF, Peterson ED, Schwamm LH (2013) Time to treatment with intravenous tissue plasminogen activator and outcome from acute ischemic stroke. JAMA 309:2480–2488

    Article  CAS  PubMed  Google Scholar 

  • Savitz SI, Dinsmore J, Wu J, Henderson GV, Stieg P, Caplan LR (2005) Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc Dis 20:101–107

    Article  PubMed  Google Scholar 

  • Sinden JD, Vishnubhatla I, Muir KW (2012) Prospects for stem cell-derived therapy in stroke. Prog Brain Res 201:119–167

    Article  PubMed  Google Scholar 

  • Smith EJ, Stroemer RP, Gorenkova N, Nakajima M, Crum WR, Tang E, Stevanato L, Sinden JD, Modo M (2012) Implantation site and lesion topology determine efficacy of a human neural stem cell line in a rat model of chronic stroke. Stem Cells 30:785–796

    Article  CAS  PubMed  Google Scholar 

  • Stepanova M, Venkatesan C, Altaweel L, Mishra A, Younossi ZM (2013) Recent trends in inpatient mortality and resource utilization for patients with stroke in the United States: 2005–2009. J Stroke Cerebrovasc Dis 22:491–499

    Article  PubMed  Google Scholar 

  • Stilley CS, Ryan CM, Kondziolka D, Bender A, DeCesare S, Wechsler L (2004) Changes in cognitive function after neuronal cell transplantation for basal ganglia stroke. Neurology 63:1320–1322

    Article  CAS  PubMed  Google Scholar 

  • Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, Ekdahl CT, Kokaia Z, Lindvall O (2006) Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24:739–747

    Article  CAS  PubMed  Google Scholar 

  • Thored P, Wood J, Arvidsson A, Cammenga J, Kokaia Z, Lindvall O (2007) Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke 38:3032–3039

    Article  PubMed  Google Scholar 

  • Villa A, Snyder EY, Vescovi A, Martinez-Serrano A (2000) Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS. Exp Neurol 161:67–84

    Article  CAS  PubMed  Google Scholar 

  • Zoli M, Grimaldi R, Ferrari R, Zini I, Agnati LF (1997) Short- and long-term changes in striatal neurons and astroglia after transient forebrain ischemia in rats. Stroke 28:1049–1058, discussion 1059

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Modo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Modo, M., Massensini, A. (2014). Repairing the Stroke-Damaged Brain: From Neural Stem Cells to Tissue Engineering. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 12. Stem Cells and Cancer Stem Cells, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8032-2_16

Download citation

Publish with us

Policies and ethics