Skip to main content

What are the Scientific Roots of Sadi Carnot’s Cycle?

  • Chapter
  • First Online:
Lazare and Sadi Carnot

Part of the book series: History of Mechanism and Machine Science ((HMMS,volume 19))

  • 861 Accesses

Abstract

In this section we investigate the possible origin of the idea of the cycle in Sadi Carnot’s work , following the hypothesis of an analogy with the electric circuit in Alessandro Volta ’s battery . First we will present a comparison from the standpoint of the fundamental concepts between Sadi Carnot ’s theory of thermodynamics and the theory of electricity . Secondly we will propose an analogy between Carnot’s cycle and the cyclic path of the I current in Volta ’s battery , whose current (between two potentials ) corresponds to the heat flux which flows between the two thermostats of two reversible heat engines paired by Sadi Carnot. Additionally, we will report and comment on some analogies between electrostatic , electric phenomena and heat engines . In conclusion we present a global vision of every possible connection and will discuss its compatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let us note, for example, the role played by artisans and practical science with respect to the birth of modern (and more mathematical) science; or generally speaking, the role played by mechanical science in engineers’ and architects’ designs during the Renaissance . (Pisano 2008).

  2. 2.

    Mach ([1896] 1986), p 314, line 12.

  3. 3.

    An overview of this chapter was published in: Pisano (2003), pp 327–348.

  4. 4.

    Mach ([1896] 1896), p 415, line 5. That is typically regarding the history of the foundations of physics or, the long–term comprehension of the development of scientific knowledge in historical epistemology (see, e.g., Chapters 6 and 9).

  5. 5.

    Count Alessandro Giuseppe Antonio Anastasio Volta ([1968] 1998). Alessandro Volta invented the battery when he was 54 years old and already one of the most famous European physicists. In 1778 he was appointed Regius Professor of Experimental Physics at Pavia University in Italy (Pancaldi). The physics department was named after him; idem for the unit of measurement of potential , which Volta called tension (later named the volt .) Nowadays more than 100 pieces of apparatus invented or used by Volta were conserved at Pavia department of physics and digitalized Le Opere di Alessandro Volta composed by 15 volumes for a national edition. See also the international and very important project European Cultural Heritage Online Project (ECHO) by Max Planck Institute for the History of Science in Berlin and other institutions. For details see: http://echo.mpiwg-berlin.mpg.de/home and http://echo.mpiwg-berlin.mpg.de/content/electricity .

  6. 6.

    Kuhn (1959), p 323, line 24.

  7. 7.

    Ivi, p 324, line 27. (Author’s quotation marks).

  8. 8.

    Volta ([1968] 1988), pp 526–527, line 36. (The translation is ours: RP). Cfr.: Volta (1796), (1800a, b), (1987).

  9. 9.

    In this chapter we will use the term “work” as Lazare and Sadi perceived it at that time. For our purposes, at times, such as a meta reflection in modern terms, will refer it as “quantity” and without explicit references Coriolis.

  10. 10.

    Let us also note the previous invention of the Leyda bottle by Peter Mussheenbroek (1692–1761) in 1745.

  11. 11.

    Volta (1816), p 245, line 1. (The translation is ours: RP).

  12. 12.

    Volta (1918–1929), IV, p 353, line 14. (The translation is ours: RP). He had quite a good knowledge of French and English experiments and studies as he frequently referenced them by names and descriptions (Volta 1782, pp 237–280; see also selected references in: Mottelay , pp 248–249).

  13. 13.

    Volta (1782), pp 278–279, line 28. (The translation is ours: RP).

  14. 14.

    Carnot (1786), pp iv–v, 11–12; see also Carnot (1778), §§ 27–79, (1780), § 102, §§ 133–141; Gillispie (1971), Appendix C, § 102, pp 301–303, §§ 133–141, pp 317–321. For the comparison and relationship between the two Carnots on that argument see below Chapter 11.

  15. 15.

    Black , I, pp 76–78, line 14. (Author’s quotations marks and italics).

  16. 16.

    The DNSs are discussed in previous Chapters 6 and 7. The DNSs that concern Sadi Carnot’s reasonings on equilibrium are: 8, 15, 31, 45 (Carnot 1978, pp 1–112) and they are also listed below in the Appendix. In addition, please see also: p 9, line 10; p. 10, line 7; p 10, line 10; p 12, line 3; p 14 line 2; p 14, line 15; p 16, line 17; p 17, line 1; p 23, line 5; p 26 ft 1, line 2.

  17. 17.

    DNSs 9, 31(=33 = 34), 32, 35 (=36), 37, 40, 41, 42, 43, 44, 45. (See below Appendix).

  18. 18.

    Galvani ([1841] 1988), p 201, line 27; see also Galvani (1794a). (Translation is ours: RP). On Galvani one can also consult: Galvani (1791, 1797).

  19. 19.

    In a modern performance of the Voltaic battery all of the electric potential differences which occur between every ionic pair that flow in the solution (before they reach the respective electrodes ) should be studied. However, assuming the exemplifying hypothesis that there are only two ionic species of opposing charges in the solution (and that, in the solution, they move methodically), we can consider a single constant electric potential difference (such as a hypothesis) for every couple (of the two species) of charges found in the solution. It is also necessary to hypothesize that in the acidulous solution, other disruptive phenomena such as those of overvoltage do not occur.

  20. 20.

    Mach ([1896] 1986), pp 310–311, line 20. (“ *” = Author’s footnote).

  21. 21.

    Another concise list might be (for our purpose): 1745: Grummert studies electric light in vacuo . 1745: Miles reads at The Royal Society (March 7) a paper concerning phosphorus , electricity and the role played by conducting bodies. Pivati writes Lettere della elettricità medica . 1753: Beccaria , scientific works on electricity are produced. 1756: Le Chevalier Jacques CF de la Perrierc de Roiffe write Mécanismes de l’électricité et de 1’univers . 1757; Wilcke studies the production of electricity by means of melting electrical substances (following Stephen Grey ’s studies). 1769: Volta addresses his de attractiva ignis electrici to Beccaria. 1775: Cavallo studies relationships between electricity and atmosphere and invents a small electroscope and a condenser of electricity. 1775: Volta produces quite important experiments on his inventions making them known by letters, e.g., the electrophorus , a sort of perpetual reservoir of electricity. 1759–1778: Benjamin produces important essays on electricity. 1781: Lavoisier proposes (see also Volta and Laplace ) that electricity is developed when solid or fluid bodies pass into the gaseous state . 1781: Kirwan, President of the Dublin Society and of the Royal Irish Academy produces quite important works on magnetism and electricity and receives from the English Royal Society its Gold Copley medal. 1790: Vassalli publishes his views concerning the electricity of bodies, electricity of water and ice. 1793: Fontana works on animal electricity. (Cfr.: Mottelay ).

  22. 22.

    Mach ([1896] 1986), p 308, line 10; see also pp 142–145.

  23. 23.

    For the sake of consistency, at letters W and V in the quotation from Mach we respectively substituted the letters Q and T.

  24. 24.

    Mach ([1896] 1986), pp 368–369, line 8. (Author’s quotation marks).

  25. 25.

    Let us note that the electric phenomena examined in this section are naturally different from the electrostatic phenomena presented in previous section.

  26. 26.

    In the Eqs. 8.8 and 8.9 we exchanged the letter “P” used by Fuchs with the letter “V”.

  27. 27.

    Callendar (1910), p 1. (Author’s quotation marks).

  28. 28.

    It should also be noted that energy , quantity of motion and angular motion also appear in mechanics ; but in this case only as convenient instruments for calculation, never as fundamental concepts; in fact in this theory the fundamental quantities are trajectory, velocity, mass and force ; where the quantity of motion is just another name to indicate the product of velocity times mass and energy as a certain constant of motion.

  29. 29.

    Schmid (1984), pp 794–795 (Author’s italics, numbers in running text and capital letters).

  30. 30.

    Schmid (1984), p 795.

  31. 31.

    Ibidem.

  32. 32.

    Ibidem, respectively formulas (3) and (4).

  33. 33.

    \( ^{33} \) Ibidem, line 6, formula (5).

  34. 34.

    In Schmid’s correct interpretation and calculus that term was not strictly necessary. Instead here we try to take into consideration what is interesting for us.

  35. 35.

    The manuscript Notes sur les mathématiques, la physique et autres sujets is also conserved at Archives of the Académie des Science–Institut de France, Paris. Thus, we used “Carnot S 1878a” to cite both of the two original manuscripts studied. The difference in the running text is presented by the titles of the two manuscripts. We let note that the manuscripts edited by Gauthier –Villars (Carnot 1878b) are not always integrally reproduced. For any complete consulting of the Sadi Carnot’s manuscripts, please see Fox (1986).

  36. 36.

    [also available in .pdf via: http://www.brera.unimi.it/sisfa/atti/index.html]

  37. 37.

    [available in .pdf via: International Galilean Bibliography , Istituto e Museo di Storia delle Scienze. Firenze: http://biblioteca.imss.fi.it/]

References

  • Bussotti P, Pisano R (2013) On the conceptual and civilization frames in René Descartes’ physical works. Adv Hist Stud (in press)

    Google Scholar 

  • Pisano R (2012b) Historical reflections on the physics mathematics relationship in electromagnetic theory. In: Barbin E, Pisano R (eds) The dialectic relation between physics and mathematics in the XIXth century. Springer, Dordrecht, pp 31–58

    Google Scholar 

  • Callendar HL (1910) Caloric theory of heat and Carnot’s principle. Proc Phys Soc Lond 23(1):153–189

    Article  MATH  Google Scholar 

  • Carnot L (1778) Mémoire sur la théorie des machines pour concourir au prix de 1779 propose par l’Académie Royale des Sciences de Paris. The manuscript is conserved in the Archives de l’Academie des sciences, Institut de France, and consists of 85 sections in 63 folios. Sections 27–60 are reproduced. In: Gillispie 1971, Appendix B, pp 271–296

    Google Scholar 

  • Carnot L (1780) Mémoire sur la théorie des machines pour concourir au prix que l’Académie Royale des Sciences de Paris doit adjuger en 1781. The manuscript is dated from Béthune 15 July 1780. It is conserved in the Archives de l’Académie des sciences, Institut de France, and consists of 191 sections in 106 folios. Sections 101–160 are reproduced. In: Gillispie 1971, Appendix C, pp 299–343

    Google Scholar 

  • Carnot L (1786) Essai sur les machines en général. Defay, Dijon

    Google Scholar 

  • Carnot S (1878a) Réflexions sur la puissance motrice du feu sur les machinés propre à développer cette puissance.Footnote

    The manuscript Notes sur les mathématiques, la physique et autres sujets is also conserved at Archives of the Académie des Science–Institut de France, Paris. Thus, we used “Carnot S 1878a” to cite both of the two original manuscripts studied. The difference in the running text is presented by the titles of the two manuscripts. We let note that the manuscripts edited by Gauthier –Villars (Carnot 1878b) are not always integrally reproduced. For any complete consulting of the Sadi Carnot’s manuscripts, please see Fox (1986).

    Archives of the Académie des Science–Institut de France, Paris

    Google Scholar 

  • Carnot S (1978a) Réflexions sur la puissance motrice du feu sur les machinés propre à développer cette puissance, édition critique par Fox Robert. Vrin J, Paris

    Google Scholar 

  • Carnot S (1978b) Recherche d’une formule propre à représenter la puissance motrice de la vapeur d’eau. In: Carnot S (ed), pp 223–234

    Google Scholar 

  • Drago A, Pisano R (2005) La nota matematica nelle Réflexions sur la puissance motrice du feu di Sadi Carnot: interpretazione del calcolo col metodo sintetico. Quad Stor della Fisica–Giornale di Fisica 13:37–57

    Google Scholar 

  • Falk G (1985) Entropy, a resurrection of caloric – a look at the history of thermodynamics. Eur J Phys 6:108–115

    Article  Google Scholar 

  • Falk G, Hermann F, Schmid GB (1983) Energy forms or energy carriers? Am J Phys 51(12):1074–1077

    Article  Google Scholar 

  • Fuchs HU (1986) A surrealistic tale of electricity. Am J Phys 54(10):907–909

    Article  Google Scholar 

  • Fuchs HU (1987) Entropy in the teaching of introductory thermodynamics. Am J Phys 55(3):215–216

    Article  MathSciNet  Google Scholar 

  • Fuchs HU (1996) The dynamics of heat. Springer–Verlag, New York

    Book  MATH  Google Scholar 

  • Galvani L (1791) De viribus electricitatis in motu musculari commentarius. De Bononiensis Scientiarum et Artium atque Accademia Commentarii VII, pp 363–418 [Id., (1953) Commentary on the Effects of Electricity on Muscolar Motion (trans: Foley M). Burndy Library, Norwalk]

    Google Scholar 

  • Galvani L (1794a) Dell’uso e dell’attività dell’arco conduttore nelle contrazioni de’ muscoli. S Tommaso d’Aquino. Bologna. In Galvani [1841] 1988, pp 155–278

    Google Scholar 

  • Galvani L (1794b) Supplemento al trattato dell’arco conduttore. S Tommaso d’Aquino. Bologna. In Galvani [1841] 1988, pp 279–299

    Google Scholar 

  • Galvani L (1797) Memorie sulla elettricità animale al celebre abate Lazzaro Spallanzani Professore nella Università di Pavia. In: Galvani 1841, pp 299–434

    Google Scholar 

  • Galvani L ([1841] 1998) Opere edite ed inedite di Luigi Galvani. In: Gherardi S (ed). Tipografia di Emidio Dall’Olmo, Bologna

    Google Scholar 

  • Gillispie CC (1971) Lazare Carnot Savant. A monograph treating Carnot’s scientific work, with facsimile reproduction of his unpublished writings on mechanics and on the calculus, and an essay concerning the latter by Youschkevitch AP. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Grattan-Guinness I (1990) Convolutions in French mathematics. Birklausen, Basel

    MATH  Google Scholar 

  • Grattan–Guinness I (1990b) Work for the workers: engineering mechanics and its instruction. In: Grattan–Guinness (ed), pp 1046–1121

    Google Scholar 

  • Kuhn TS (1959) Energy conservation as example of simultaneous discovery. In: Clagett M (ed) Critical problems in the history of science. Wisconsin University Press, Madison, pp 321–356

    Google Scholar 

  • Mach E (1896) Die Prinzipien der Wärmelehre. Historisch–kritisch entwickelt. Barth JA, Brockhaus, Leipzig

    MATH  Google Scholar 

  • Mach E (1986) In: McGuinness B (ed) Principles of the theory of heat, historically and critically elucidated, vol 17. Reidel D Publishing Co, Boston

    Chapter  Google Scholar 

  • Pisano R (2001) Interpretazione della nota matematica nelle Réflexions sur la puissance motrice du feu di Sadi Carnot. In: Proceedings of XX SISFA Congress, Osservatiorio Astronomico di Capodimonte, Napoli, pp 205–230Footnote

    [also available in .pdf via: http://www.brera.unimi.it/sisfa/atti/index.html]

    Google Scholar 

  • Pisano R (2003) Il ciclo di S Carnot e la pila di A Volta. In: Garuccio A (ed) Proceedings of del XXIII SISFA Congress, Progedit, Bari, pp 327–348

    Google Scholar 

  • Pisano R (2007b) A history of chemistry à la Koyré? Introduction and setting of an epistemological problem. Khimiya 17(2):143–161

    Google Scholar 

  • Pisano R (2008) Il ruolo della scienza meccanica nella progettazione degli architetti e degli ingegneri del Rinascimento (The role played by mechanical science in the architects and engineers in the Renaissance), PhD dissertations, Roma, 2 vols. University of Roma la Sapienza, RomaFootnote

    [available in .pdf via: International Galilean Bibliography , Istituto e Museo di Storia delle Scienze. Firenze: http://biblioteca.imss.fi.it/]

    Google Scholar 

  • Pisano R (2010) On principles in Sadi Carnot’s thermodyamics (1824). Epistemological reflections. Almagest Int Interdiscip J 2(2010):128–179

    Article  MATH  Google Scholar 

  • Pisano R (2011b) Historical reflections on the physics mathematics relationship in electromagnetic theory. In: Barbin E, Pisano R (eds) The dialectic relation between physics and mathematics in the XIXth century, Springer, Dordrecht, in press

    Google Scholar 

  • Pisano R (2011c) Physics–mathematics relationship. Historical and epistemological notes. In: Barbin E, Kronfellner M Tzanakis C, (eds) Proceedings of the ESU 6 European summer university history and epistemology in mathematics, Verlag Holzhausen GmbH–Holzhausen Publishing Ltd., Vienna, pp 457–472

    Google Scholar 

  • Poisson SD (1823a) Sur la chaleur de gaz et des vapeurs. Ann Chim Phys XXXIII:337–352

    Google Scholar 

  • Poisson SD (1823b) Sur la vitesse du son. Ann Chim Phys XXIII:5–16

    Google Scholar 

  • Poisson SD (1833) Traité de Mécanique. Bachelier, Paris

    Google Scholar 

  • Schmid GB (1984) An up – to – date approach to physics. Am J Phys 52(9):794–799

    Article  Google Scholar 

  • Volta A (1782) XVI. Del modo di render sensibilissima la più debole Elettricità sia Naturale, sia Artificiale. By Mr. Alexander Volta, Professor of experimental philosophy in Como, &; communicated by Right Hon. George Earl Cowper, FRS. Read on March 14, 1782. Davis L, Elmsly Printers to the Royal Society. Philosophical transaction of the royal society of London LXXII/I:237–280

    Google Scholar 

  • Volta A (1796) Lettera Terza del Sig Cav Don Alessandro Volta P Professore, Al Sig Ab Anton Maria Vassalli Professore di Fisica a Torino, 24 ottobre 1795. Annali di chimica e storia naturale 11:84–128

    Google Scholar 

  • Volta A (1799) L’elettroscopio condensatore in una lettera a Lorenzo Mascheroni. In: Opere scelte di Alessandro Volta, p 511

    Google Scholar 

  • Volta A (1800a) Sull’elettricità eccitata dal semplice contatto di sostanze conduttrici di diversa natura in una lettera di Alessandro Volta a Sir Joseph Banks, da Como nel Milanese, 20 marzo 1800. In: Opere scelte di Alessandro Volta, pp 514–534

    Google Scholar 

  • Volta A (1800b) On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr. Alexander Volta … to the Rt. Hon. Sir Joseph Banks … Philosophical transactions of the Royal Society II:403–431

    Google Scholar 

  • Volta A (1816) Lettera Settima [and Addizione alla Lettera Settima]. In: Collezione dell’Opere del Cavaliere Conte Alessandro Volta Patrizio Comasco. Membro dell’Istituto Reale del Regno Lombardo Veneto, Professore Emerito dell’Università di Pavia, e Socio delle più Illustri Accademie d’Europa. Tomo I. Parte II. Nella stamperia di Guglielmo Piatti, Firenze, pp 238–283

    Google Scholar 

  • Volta A (1918–1929) Le Opere di Alessandro Volta Edizione Nazionale, vol I–VII. Ulrico Hoepli, Milano

    Google Scholar 

  • Volta A ([1968] 1998) Opere scelte di Alessandro Volta. In: Gliozzi M (ed) reprint with new bibliograhy, UTET, Torino

    Google Scholar 

  • Volta A (1987) L’elettromozione. In: Recenti M (ed) Theoria, Roma

    Google Scholar 

  • Zeuner G ([1860], 1866) Grundzüge der mechanischen Wärmetheorie mit besonderer Rücksicht auf das Verhalten des Wasserdampfes, 2nd edn. Freiberg, Engelhardt

    Google Scholar 

  • Scott WL (1971) The conflict between atomism and conservation laws 1640–1860. Elsevier Publishing Company, New York

    Google Scholar 

  • Truesdell CA (1980) The tragicomical history of thermodynamics. 1822–1854. Springer, Berlin

    Book  MATH  Google Scholar 

  • Ørsted HC (1822) Instruments pour mesurer la compression de l’eau. Annales de chimie et de physique XXI:99–100

    Google Scholar 

  • Ørsted HC (1823) Sur la compressibilité de l’eau. Annales de chimie et de physique XXII:192–198

    Google Scholar 

  • Ampère AM (1822a) Recueil d'observation électrodynamiques. Crochard, Paris.

    Google Scholar 

  • Ampère AM (1822b) Extrait d'une lettre d'Ampère au Professeur de la Rive sur des expériences électro-magnétiques et sur la formule qui représente l'action mutuelle de deux portions infiniment petites de courants électriques–12 juin 1822. Bibliothèque universelle des sciences, belles–lettres, et arts XX: 185–192.

    Google Scholar 

  • Ampère AM (1826) Théorie des phénomènes électro-dynamiques uniquement déduite de l'expérience. Méquignon-Marvis, Paris

    MATH  Google Scholar 

  • Ampère AM (1827) Théorie mathématiques des phénomènes électro-dynamiques uniquement déduite de l'expérience. Chez Firmin Didot, Paris

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gillispie, C.C., Pisano, R. (2014). What are the Scientific Roots of Sadi Carnot’s Cycle?. In: Lazare and Sadi Carnot. History of Mechanism and Machine Science, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8011-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8011-7_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8010-0

  • Online ISBN: 978-94-017-8011-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics