Advertisement

On Principles in Sadi Carnot’s Thermodynamics

  • Charles Coulston Gillispie
  • Raffaele Pisano
Chapter
Part of the History of Mechanism and Machine Science book series (HMMS, volume 19)

Abstract

In 1824 Sadi Carnot published Réflexions sur la puissance motrice du feu in which he almost entirely founded thermodynamic theory. Two years after his death, his friend Clapeyron’ introduced the famous PV diagram to analytically represent the famous Carnot cycle , one of the main and crucial ideas presented by Carnot in his booklet. Twenty–five years later, in order to achieve the modern version of the theory, Kelvin and Clausius had to reject the caloric hypothesis, which had influenced a few of Carnot’s arguments. Relying on the possibility of studying the history of science by means of logical investigation, in this section we shall propose historical–epistemological research on Sadi Carnot’s original thermodynamic theory. In this theory, the French scientist presents more than two principles, all of which are expressed by double negative sentences (generally speaking) within non–classical logic.

Keywords

Classical Logic Double Negation Caloric Theory Logical Organization Perpetual Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aristotle (1853) On the definition and division of principles. In: Octavius Freire Porphyry Owen (ed) The Organon, or logical treatises, of Aritotle, vol 1. Bohn H G, London, pp 263–266Google Scholar
  2. Aristotle (1996) In: Waterfield R (ed) The principles of nature–physics, 1st edn. Oxford University Press, OxfordGoogle Scholar
  3. Armstrong HL (1960) Statement of second law of thermodynamics. Am J Phys 28(6):564CrossRefGoogle Scholar
  4. Bailyn M (1985) Carnot and the universal heat death. Am J Phys 53(11):1092–1099MathSciNetCrossRefGoogle Scholar
  5. Pisano R (2012b) Historical reflections on the physics mathematics relationship in electromagnetic theory. In: Barbin E, Pisano R (eds) The dialectic relation between physics and mathematics in the XIXth century. Springer, Dordrecht, pp 31–58Google Scholar
  6. Pisano R (2013) Reflections on the Scientific Conceptual Streams in Leonardo da Vinci and his Relationship with Luca Pacioli. Adv Hist Stud 2(2):32–45CrossRefGoogle Scholar
  7. Pisano R (2012a) On Lazare and Sadi Carnot. A synthetic view of a historical epistemological research program. In: Matovani R (ed), Proceedings of XXX SISFA Congress. Argalia Editore, Urbino, pp 147–153Google Scholar
  8. Barnett M (1958) Sadi Carnot and the second law of thermodynamics. Osiris 13:327–357CrossRefzbMATHGoogle Scholar
  9. Brønsted JN (1939) The fundamental principles of energetics. Philos Mag 29(7/196):449–470Google Scholar
  10. Brønsted JN (1955) Principles and problems in energetics [Id., (1946) Principer og problemer i energetiken. Lunos Bogtryckeri, Copenhagen] (trans: Bell RP and Foreword by la Mer VK). Interscience, New YorkGoogle Scholar
  11. Buchdahl HA (1966) The concepts of classical thermodynamics. The Cambridge University Press, CambridgezbMATHGoogle Scholar
  12. Buchdahl HA (1987) A variational principle in classical thermodynamics. Am J Phys 55(1):81–83MathSciNetCrossRefGoogle Scholar
  13. Capecchi D, Pisano R (2008) La meccanica in Italia nei primi anni del Cinquecento. Il contributo di Niccolò Tartaglia. In: Tucci (ed) Proceedings of XXV SISFA Congress, Milano, pp C17.1–C17.6 50 Google Scholar
  14. Capecchi D, Pisano R (2010a) Reflections on Torricelli’s principle in mechanics. Organon 42:81–98zbMATHGoogle Scholar
  15. Capecchi D, Pisano R (2010b) Scienza e Tecnica nell’Architettura del Rinascimento. Cisu, RomaGoogle Scholar
  16. Carnap R (1943) Formalisation of logic. The Harvard University Press, Cambridge, MAzbMATHGoogle Scholar
  17. Carnot L (1778) Mémoire sur la théorie des machines pour concourir au prix de 1779 propose par l’Académie Royale des Sciences de Paris. The manuscript is conserved in the Archives de l’Academie des sciences, Institut de France, and consists of 85 sections in 63 folios. Sections 27–60 are reproduced. In: Gillispie 1971, Appendix B, pp 271–296Google Scholar
  18. Carnot L (1780) Mémoire sur la théorie des machines pour concourir au prix que l’Académie Royale des Sciences de Paris doit adjuger en 1781. The manuscript is dated from Béthune 15 July 1780. It is conserved in the Archives de l’Académie des sciences, Institut de France, and consists of 191 sections in 106 folios. Sections 101–160 are reproduced. In: Gillispie 1971, Appendix C, pp 299–343Google Scholar
  19. Carnot L (1786) Essai sur les machines en général. Defay, DijonGoogle Scholar
  20. Carnot L (1803a) Principes fondamentaux de l’équilibre et du mouvement. Deterville, ParisGoogle Scholar
  21. Carnot S (1824) Réflexions sur la puissance motrice du feu sur les machinés propre à développer cette puissance. Bachelier, PariszbMATHGoogle Scholar
  22. Carnot S (1978a) Réflexions sur la puissance motrice du feu sur les machinés propre à développer cette puissance, édition critique par Fox Robert. Vrin J, ParisGoogle Scholar
  23. Carnot S (1978b) Recherche d’une formule propre à représenter la puissance motrice de la vapeur d’eau. In: Carnot S (ed), pp 223–234Google Scholar
  24. Carnot S (1986) Reflexions on the motive power of fire: a critical edition with the surviving scientific manuscripts (trans and ed: Robert Fox). The Manchester University Press, ManchesterGoogle Scholar
  25. Chatzis K (2009) Charles Dupin, Jean–Victor Poncelet et leurs mécaniques pour “artistes” et ouvriers. In: Christen C, Vatin F (eds) Charles Dupin (1784–1873): ingénieur, savant, économiste, pédagogue et parlementaire du Premier au Second Empire. PUR, Rennes, pp 99–113Google Scholar
  26. Cheng KC (1998) Some observations on Carnot cycle as the genesis of the heat pipe and thermosyphon. Int J Mech Eng Educ 28(1):69–87CrossRefGoogle Scholar
  27. Clagett M, Moody E (1960) The medieval science of weights. Scentia de ponderibus. The University of Wisconsin Press, MadisonGoogle Scholar
  28. Clapeyron ÉBP (1834) Mémoire sur la puissance motrice du feu. J de l’École R Polytech XXIII(XIV):153–190Google Scholar
  29. Clausius RJE (1850) Über die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Annalen der Physik und Chemie 79:368–397, 500–524. (English trans: Id., On the motive power of heat and on the laws which can be deduced from it for the theory of heat itself. In: Mendoza 1960, pp 73–74, 109–152)Google Scholar
  30. Clausius R (1865a) Sur la détermination de la disgregation d’un corp et de la vraie capacité calorifique. Bibliothèque universelle de Genève, Archives des sciences physiques et naturelles XXV:117–124Google Scholar
  31. Clausius RJE (1865b) Über die bewegende Kraft der Wärme und die GesetzeGoogle Scholar
  32. Condillac EB (1821) La logique par Condillac. Verdier Quai Des Augustins, ParisGoogle Scholar
  33. Cropper HW (1987) Carnot’s function: origins of the thermodynamic concept of temperature. Am J Phys 55(2):120–122MathSciNetCrossRefGoogle Scholar
  34. Da Costa N, French S (2003) Science and partial truth: a unitary approach to models and reasoning in science. Oxford University Press, New YorkCrossRefGoogle Scholar
  35. Dalla Chiara ML, Toraldo di Francia G (1999) Introduzione alla filosofia della scienza. Laterza, Bari, pp 87–88Google Scholar
  36. Dartnall WJ, Reizes J (2005) A novel approach to the teaching of thermodynamic cycles and the laws of thermodynamics. In: Proceedings of international mechanical engineering congress and exposition 2005. American Society of Mechanical Engineers, New York, pp 1–9Google Scholar
  37. Décombe L (1919) Sadi Carnot et le Principe de l’Équivalence. Comptes rendus 168:268–271Google Scholar
  38. Delaroche F, Bérard JE (1813) Mémoire sur la détermination de la chaleur spécifique des différens gaz. Ann Chim Phys 85(72–110):113–182Google Scholar
  39. Desormes CB, Clément N (1819a) Mémoire sur la Théorie des machines à feu (Extrait). In: Bulletin des Sciences par la Société Philomathique de Paris, 1817–1819. Imprimerie de Plassan, Paris, pp 115–118Google Scholar
  40. Desormes CB, Clément N (1819b) Mémoire sur la théorie des machines à vapeur, par M.M. Desormes et Clément (Extraits). Bulletin des Sciences par la Société Philomathique de Paris nouvelle série 6:115–118Google Scholar
  41. Dijksterhuis EJ (1955) The principal works of Simon Stevin–Mechanics, vol I. NV Swets & Zeitlinger, AmsterdamGoogle Scholar
  42. Drago A (1991) Le due Opzioni. La Meridiana, MolfettaGoogle Scholar
  43. Drago A (1995) The choice of the kind of mathematics in historiography: the case–study of S Carnot. In: Kovàks L (ed) Studia Physica Savariensia I, History of science in teaching physics, pp 102–111Google Scholar
  44. Drago A (2005) Kolmogoroff and the relevance of the double negation law in cience. In: Sica G (ed) Essays on the foundations of mathematics and logic–advanced studies in mathematics and logic. Polimetrica International Scientific Publisher, Monza, pp 57–81Google Scholar
  45. Drago A, Pisano R (2000) Interpretazione e ricostruzione delle Réflexions di Sadi Carnot mediante la logica non–classica. Giornale di Fisica 40:195–217Google Scholar
  46. Drago A, Pisano R (2002) S Carnot’s Réflexions: a theory based on non–classical Logic. Bull Symb Log 8:130–131Google Scholar
  47. Drago A, Pisano R (2005) La nota matematica nelle Réflexions sur la puissance motrice du feu di Sadi Carnot: interpretazione del calcolo col metodo sintetico. Quad Stor della Fisica–Giornale di Fisica 13:37–57Google Scholar
  48. Drago A, Pisano R (2007) La novità del rapporto fisica–matematica nelle Réflexions di Sadi Carnot. Atti della Fondazione Giorgio Ronchi 62(4):497–525Google Scholar
  49. Drago A, Pisano R (2008) Note storiche sul superamento della teoria del calorico in Sadi Carnot. In: Tucci (ed) Proceedings of XXV SISFA Congress, Milano pp C22.1–C22.651 Google Scholar
  50. Dummett M (1975) Principles of intuitionism. The Clarendon Press, OxfordzbMATHGoogle Scholar
  51. Falk G (1985) Entropy, a resurrection of caloric – a look at the history of thermodynamics. Eur J Phys 6:108–115CrossRefGoogle Scholar
  52. Fox R (1969) James Prescott Joule, 1818–1889. In: North J (ed) Mid–nineteenth–century scientists. Pergamon Press, New York, pp 72–103Google Scholar
  53. Fox R (1970) Watt’s expansive principle in the work of Sadi Carnot and Nicolas Clément. Notes Rec R Soc Lond 24:233–253CrossRefGoogle Scholar
  54. Fox R (1988) Les Réflexions sur la puissance motrice du feu de Sadi Carnot et la leçon se leur éditions critique. La vie des sciences – Comptes rendus, série générale 5/4:283–301Google Scholar
  55. Fuchs HU (1987) Entropy in the teaching of introductory thermodynamics. Am J Phys 55(3):215–216MathSciNetCrossRefGoogle Scholar
  56. Gabbey AW, Herivel JW (1966) Un manuscrit inédit de Sadi Carnot. Rev Hist Sci Appl 19(2):151–166Google Scholar
  57. Girard PS (1824) Réflexions sur la puissance motrice du feu sur les machinés propre à développer cette puissance, par S. Carnot, ancien élève de l’école polytechnique […] prix 3 fr. Revue Encyclopédique XXIII–Juillet, p 414Google Scholar
  58. Haack S (1974) Deviant logics. The Cambridge University Press, CambridgezbMATHGoogle Scholar
  59. Hodges W (1983) Elementary predicate logic. In: Gabbay DM, Guenthner F (eds) Handbook of philosophical logic – elements of classical logic, vol I. Reidel, Dordrecht, pp 1–131CrossRefGoogle Scholar
  60. Hodges W (1997) A shorter model theory. The Cambridge University Press, CambridgezbMATHGoogle Scholar
  61. Hodges W (1998) The laws of distribution for syllogism. Notre Dame J Formal Logic 39:221–230MathSciNetCrossRefzbMATHGoogle Scholar
  62. Hoyer U (1976) La théorie de Carnot première et seconde approximations de la thermodynamique. In: Taton (ed) 1976, pp 221–228Google Scholar
  63. Joule JP (1847) On the mechanical equivalent of heat, as determined by the heat evolved by the friction of fluids. Philos Mag, 3rd ser XXXI(207):173–176Google Scholar
  64. Joule JP (1965) The Scientific Papers of James Prescott Joule. Dawson’s, London, I, pp 277–281Google Scholar
  65. Kelly EM (1964) Simple treatment of thermodynamic efficiency. Am J Phys 32(8):643CrossRefGoogle Scholar
  66. Kieseppä IA (2000) Rationalism, naturalism, and methodological principles. Erkenntnis 53(3):337–352CrossRefGoogle Scholar
  67. Koetsier T (2010) Simon Stevin and the rise of Archimedean mechanics. In: Ceccarelli M, Paipetis S (eds) Proceedings of the genius of archimedes. Springer, Dordrecht, pp 85–111Google Scholar
  68. Kolmogorov AN (1925) On the principle tertium non datur. Matematicheskij Sbornik 32: 646–667 [English trans In: Kolmogorov 1991–1993, I:40–68]Google Scholar
  69. Kolmogorov AN (1932) Zur Deutung Der Intuitionistischen Logik. Matematicheskij Zeitschr 35: 58–65 [English trans In: Kolmogorov 1991–1993, I:151–158]Google Scholar
  70. Kolmogorov AN (1991–1993) Selected works of A.N. Kolmogorov. In: Mathematics and mechanics, vol I. Kluwer, DordrechtGoogle Scholar
  71. Kostic MM (2008) Sadi Carnot’s ingenious reasoning of ideal heat engine reversible cycles In: Proceedings of IASME/WSEAS international conference on Energy, Environment, Ecosystems and Sustainable Development (EEESD’08), Algarve, Portugal, pp 159–166Google Scholar
  72. Kuhn TS (1959) Energy conservation as example of simultaneous discovery. In: Clagett M (ed) Critical problems in the history of science. Wisconsin University Press, Madison, pp 321–356Google Scholar
  73. Laplace PS (1822) Notes sur la vitesse du son. Ann Chim Phys XX:266–268Google Scholar
  74. Lavoisier AL (1789 [1937]) Traité élémentaire de Chimie. Gauthier–Villars, ParisGoogle Scholar
  75. Lavoisier AL, Laplace PS ([1780] 1784) Mémoires sur la Chaleur. In: Histoire de l’Académie Royale des Sciences. (First reading on 18th June 1783). Imprimerie Royale, Paris, pp 355–408Google Scholar
  76. Lemons DS, Penner MK (2008) Sadi Carnot’s contributions to the second law of thermodynamics. Am J Phys 76(1):21–25CrossRefGoogle Scholar
  77. Lervig P (1972) On the structure of Carnot’s theory of heat. Arch Hist Exact Sci 9(2):222–239MathSciNetCrossRefGoogle Scholar
  78. Lervig P (1976) The existence of work function in Carnot’s theory. In: Taton (ed), pp 199–212Google Scholar
  79. Lervig P (1982) What is heat? C. Truesdell’s view of thermodynamics. A critical discussion. Centaurus 26(2):85–122MathSciNetCrossRefGoogle Scholar
  80. Mendoza E (ed) (1960) Reflections on the motive power of fire and other papers on the second law of thermodynamics by E Clapeyron and R Clausius. Dover, New YorkGoogle Scholar
  81. Nagel E (1961) The structure of science: problems in the logic of scientific explanation. Harcourt–Brace & World Inc, New YorkGoogle Scholar
  82. Newton I (1803) The mathematical principles of natural philosophy, by Sir Isaac Newton (trans into English by Motte A). vol I, Symonds, LondonGoogle Scholar
  83. Ostwald W (1892) Klassiker der exakten Wissenschaften. Engelmann 37, LipsiaGoogle Scholar
  84. Pisano R (2001) Interpretazione della nota matematica nelle Réflexions sur la puissance motrice du feu di Sadi Carnot. In: Proceedings of XX SISFA Congress, Osservatiorio Astronomico di Capodimonte, Napoli, pp 205–23052 Google Scholar
  85. Pisano R (2003) Il ciclo di S Carnot e la pila di A Volta. In: Garuccio A (ed) Proceedings of del XXIII SISFA Congress, Progedit, Bari, pp 327–348Google Scholar
  86. Pisano R (2004) Quanti sono i principi della termodinamica. In: Proceedings of XLIII AIF Congress–LFNS, pp 203–211Google Scholar
  87. Pisano R (2005) Si può insegnare la pluralità delle logiche? Periodico di Matematiche 1:41–58Google Scholar
  88. Pisano R (2006a) Mathematics of logic and logic of mathematics. Critical problems in history of science. Bull Symb Log 12(2):358Google Scholar
  89. Pisano R (2006b) La Science et la Hypothèse di JH Poincaré. Note epistemologiche. Riv Epistemologia didattica 1:279–300Google Scholar
  90. Pisano R (2007a) Note sui Principes de Thermodynamique di P de Saint Robert. In: Proceedings of XXIV SISFA Congress, Biblipolis, Napoli–Avellino, pp 129–134Google Scholar
  91. Pisano R (2007b) A history of chemistry à la Koyré? Introduction and setting of an epistemological problem. Khimiya 17(2):143–161Google Scholar
  92. Pisano R (2007c) Évariste Galois’ algebraic theory, epistemological reflections and educational elements. In: Barbin E, Stehlikova N, Tzanakis C (eds) Proceedings of European summer university on the history and epistemology in mathematics education, pp 147–148Google Scholar
  93. Pisano R (2009a) On method in Galileo Galilei’ mechanics. In: Hunger H (ed) Proceedings of ESHS 3rd conférence. Austrian Academy of Science, Vienna, pp 147–186Google Scholar
  94. Pisano R (2009b) Continuity and discontinuity. On method in Leonardo da Vinci’ mechanics. Organon 41:165–182Google Scholar
  95. Pisano R (2009c) Il ruolo della scienza archimedea nei lavori di meccanica di Galilei e di Torricelli. In: Giannetto E, Giannini G, Capecchi D, Pisano R (eds) Da Archimede a Majorana: La fisica nel suo divenire. Proceedings of XXVI SISFA congress, Guaraldi Editore, Rimini, pp 65–74Google Scholar
  96. Pisano R (2009d) Towards high qualification for science education. The loss of certainty. Int J Baltic Sci Educ 8(2):64–68Google Scholar
  97. Pisano R (2010) On principles in Sadi Carnot’s thermodyamics (1824). Epistemological reflections. Almagest Int Interdiscip J 2(2010):128–179CrossRefzbMATHGoogle Scholar
  98. Pisano R (2011b) Historical reflections on the physics mathematics relationship in electromagnetic theory. In: Barbin E, Pisano R (eds) The dialectic relation between physics and mathematics in the XIXth century, Springer, Dordrecht, in pressGoogle Scholar
  99. Pisano R (2011c) Physics–mathematics relationship. Historical and epistemological notes. In: Barbin E, Kronfellner M Tzanakis C, (eds) Proceedings of the ESU 6 European summer university history and epistemology in mathematics, Verlag Holzhausen GmbH–Holzhausen Publishing Ltd., Vienna, pp 457–472Google Scholar
  100. Pisano R, Capecchi D (2009) La Théorie Analytique de la Chaleur. Notes on Fourier and Lamé. In: Barbin E (ed) Proceedings of Gabriel Lamé, les pérégrinations d’un ingénieur du XIXe siècle. Bulletin de la Sabix 44:83–90Google Scholar
  101. Pisano R, Capecchi D (2010) On Archimedean roots in Torricelli’s mechanics. In: Ceccarelli M, Paipetis S (eds) Proceedings of the genius of archimedes. Springer, Dordrecht, pp 17–27Google Scholar
  102. Pisano R, Gaudiello I (2009a) Continuity and discontinuity. An epistemological inquiry based on the use of categories in history of science. Organon 41:245–265Google Scholar
  103. Pisano R, Gaudiello I (2009b) On categories and scientific approach in historical discourse. In: Hunger H (ed) Proceedings of ESHS 3rd conference. Austrian Academy of Science, Vienna, pp 187–197Google Scholar
  104. Popper K (1959) The logic of scientific discovery. Hutchinson, LondonzbMATHGoogle Scholar
  105. Popper K (1963) Conjectures and refutations: the growth of scientific knowledge. Routledge, LondonGoogle Scholar
  106. Prawitz D (1977) Meaning and proof. The conflict between the classical and intuitionistic logic. Theoria 43:6–39MathSciNetzbMATHGoogle Scholar
  107. Prawitz D, Melmnaas PE (1968) A survey of some connections between classical, intuitionistic and minimal logic. In: Schmidt A, Schuette H (eds) Contributions to mathematical logic. North–Holland, Amsterdam, pp 215–229Google Scholar
  108. Reech F (1853) Théorie général des effets dynamiques de la chaleur. Journal de Mathématiques pures et appliquées XVIII:357–378Google Scholar
  109. Renaud P (1937) Analogies entre le principes de Carnot. Mayer et Curie Hermann, ParisGoogle Scholar
  110. Robelin CP (1832) Nécrologie. Sadi Carnot. Revue Encyclopédique 55:528–530Google Scholar
  111. Scott WL (1971) The conflict between atomism and conservation laws 1640–1860. Elsevier Publishing Company, New YorkGoogle Scholar
  112. Skolem T ([1920], 1967) Logico–combinatorial investigations in the satisfiability or provability of mathematical propositions. In: van Heijenoort J (ed) From Frege to G&oumldel: a source book in mathematical logic, 1879–1931. The Harvard University Press, Cambridge, MA, pp 252–263Google Scholar
  113. Stevin S ([1605] 1608) Liber primus Staticae. De staticae elmentis. In: Tomus quartus mathematicorum hypomnematum de statica, Lugodini BatavoruGoogle Scholar
  114. Thomson W (1848a) On an absolute thermometric scale founded on Carnot’s theory of the motive power of heat, and calculated from Regnault’s observations. Proc Camb Philos Soc 1(5):66–71Google Scholar
  115. Thomson W (1848b) An account of Carnot’s theory of the motive power of heat with numerical results deduced from regnault’s experiments on steam. Trans Edinb R Soc XVI(5):541–574Google Scholar
  116. Thomson W (1851a) On an absolute thermometric scale founded on Carnot’s theory of the motive power of heat, and calculated from Regnault’s observations. Mathematical and physical papers. The Cambridge University Press, Cambridge I:100–106Google Scholar
  117. Thomson W (1851b) On the dynamical theory of heat, with numerical results deduced from Mr Joule’s equivalent of a thermal unit, and M. Regnault’s observations on steam. Mathematical and physical papers. The Cambridge University Press, Cambridge, I:175–183Google Scholar
  118. Truesdell CA, Bharatha S (1977) The concepts and logic of classical thermodynamics as a theory of heat engines: rigorously constructed upon the foundation laid by S Carnot and F Reech (Theoretical and mathematical physics). Springer, Berlin/Heidelberg/New YorkCrossRefzbMATHGoogle Scholar
  119. Condillac EB (1798) La langue des calculs. Houel, ParisGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Charles Coulston Gillispie
    • 1
  • Raffaele Pisano
    • 2
  1. 1.Department of HistoryPrinceton UniversityPrincetonUSA
  2. 2.SCité University of Lille 1LilleFrance

Personalised recommendations