Skip to main content

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 1956 Accesses

Abstract

This chapter begins with the construction of different approximations of Maxwell’s equations by finite element methods and the comparison of their performance versus discontinuous Galekin methods. Then, we treat the important and not obvious problem of spurious modes which appear in most approximations and we indicate how to suppress these modes. The last section contains error estimates of discontinuous Galekin methods with mass-lumping on hexahedra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One can multiply the second equation by \(\mu ^{-1}\) in order to obtain transposed stiffness matrices in the two equations.

  2. 2.

    Which is possible since \(\left[ H^1( \varOmega )\right] ^3 \subset H(\mathbf{curl},\varOmega )\). The boundary condition will be treated below.

  3. 3.

    For non-structured meshes, one can obtain less or more degrees of freedom for a vertex and a point on an edge.

  4. 4.

    Since they were made by different students, the values of the eigenmodes vary in the following figures, but they represent the same eigenmodes with a multiplying coefficient.

  5. 5.

    This judicious remark was made by I. Perugia during a workshop.

References

  1. Nédélec, J.-C.: Mixed finite elements in \({I\!\! R}^3\). Numer. Math. 35(3), 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yee, K.: Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  MATH  Google Scholar 

  3. Cohen, G.: High order numerical methods for transient wave equations. Scientific computation. Springer, Berlin (2001)

    Google Scholar 

  4. Assous, F., Degond, P., Heintze, E., Raviart, P.-A., Segre, J.: On a finite-element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109(2), 222–237 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen, G., Duruflé, M.: Non spurious spectral-like element methods for Maxwell’s equations. J. Comp. Math. 25(3), 282–304 (2007)

    Google Scholar 

  6. M. Duruflé, Intégration numérique et éléments finis d’ordre élevé appliqués aux équations de Maxwell en régime harmonique, thèse de doctorat, U. de Paris-Dauphine, 2006

    Google Scholar 

  7. Cohen, G., Fauqueux, S.: Mixed finite elements with mass-lumping for the transient wave equation. J. Comput. Acoust. 8(1), 171–188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen, G., Fauqueux, S.: Mixed spectral finite elements for the linear elasticity system in unbounded domains. SIAM J. Sci. Comput. 26(3), 864–884 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Costabel, M., Dauge, M., Martin, D., Vial, G.: Numerical mathematics and advanced applications. In: Weighted Regularization of Maxwell Equations: Computations in Curvilinear Polygons, pp. 273-280. Springer, Milan (2003)

    Google Scholar 

  10. Cohen, G., Monk, P.: Mur-Nédélec finite element schemes for Maxwell’s equations. Comput. Methods Appl. Mech. Engrg. 169(3–4), 197–217 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gurari, M.: The Location of Eigenvalues and Eigenvectors of Complex Matrices. J. Approx. Theory 22(2), 119–149 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Numerical Mathematics and Scientific Computation (2003)

    Book  MATH  Google Scholar 

  13. Nédélec, J.-C.: A new family of mixed finite elements in \({I \!\! R}^3\). Numer. Math. 50(1), 57–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Descloux, J., Nassif, N., Rappaz, J.: On spectral approximation Part 1. The problem of convergence. RAIRO Numer. Anal. 12, pp. 97–112 (1978)

    Google Scholar 

  15. Descloux, J., Nassif, N., Rappaz, J.: On spectral approximation Part 2. Error estimates for the Galerkin method convergence. RAIRO Numer. Anal. 12, pp. 113–119 (1978)

    Google Scholar 

  16. Caorsi, S., Fernandes, P., Raffetto, M.: On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 38(2), 580–607 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Boffi, D.: Fortin operator and discrete compactness for edge elements. Numer. Math. 87, 229–246 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Boffi, D.: A note on the de Rham complex and a discrete compactness property. Appl. Math. Lett. 14, 33–38 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Boffi, D., Costabel, M., Dauge, M., Demkowicz, L., Hiptmair, R.: Discrete Compactness for the p-Version of Discrete Differential Forms. SIAM J. Numer. Anal. 49(1), 135–158 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Boffi, D., Fernandez, P., Perugia, I.: Computational models of electromagnetic resonators: Analysis of edge element approximation. SIAM J. Numer. Anal. 36(4), 1264–1290 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Boffi, D., Gastaldi, L.: Edge finite elements for the approximation of Maxwell resolvent operator. RAIRO - Math. Model. Numer. Anal. 36(2), 293–305 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44(5), 2198–2226 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Warburton, T., Embree, M.: The role of the penalty in the local discontinuous Galerkin method for Maxwell’s eigenvalue problem. Comput. Methods Appl. Mech. Engrg. 195(25–28), 3205–3223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Creusé, E., Nicaise, S.: Discrete compactness for a discontinuous Galerkin approximation of Maxwell’s system. ESAIM Math. Model. Numer. Anal. 40(2), 413–430 (2006)

    Article  MATH  Google Scholar 

  25. Buffa, A., Houston, P., Perugia, I.: Discontinuous Galerkin computation of the maxwell eigenvalues on simplicial meshes. J. Comput. Appl. Math. 204(2), 317–333 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Buffa, A., Perugia, I., Warburton, T.: The mortar-discontinuous Galerkin method for the 2D Maxwell eigenproblem. J. Sci. Comput. 40(1), 86–114 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Assous, F., Ciarlet, P., Raviart, P.-A., Sonnendrücker, E.: A characterization of the singular part of the solution to Maxwell’s equations in a polyhedral domain. Math. Meth. Appl. Sci. 22(6), 485–499 (1999)

    Article  MATH  Google Scholar 

  28. Hesthaven, J.S., Warburton, T.: Nodal discontinuous Galerkin methods. Texts in Applied Mathematics, 54, Springer, Berlin (2008)

    Google Scholar 

  29. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Cambridge monographs on applied and computational mathematics spectral methods for time-dependent problems. Spectral Methods for Time-Dependent Problems, Cambridge University Press. Cambridge (2007)

    Google Scholar 

  30. Bernardi, C., Maday, Y.: Spectral methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis V. Elsevier, North-Holland, The Netherlands (1999)

    Google Scholar 

  31. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Elsevier, North-Holland (2002)

    Book  MATH  Google Scholar 

  32. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Sringer, New York (1986)

    Book  MATH  Google Scholar 

  33. Rivière, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39(3), 902–931 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Prudhomme, S., Pascal, F., Oden, T., Romkes, A.: Review of a Priori Error Estimation for Discontinuous Galerkin, Orsay (2000)

    Google Scholar 

  35. Pernet, S., Ferrieres, X.: HP a-priori error estimates for a non-dissipative spectral discontinuous Galerkin method to solve the Maxwell equations in the time domain. Math. Comp. 76(260), 1801–1832 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Montseny, E., Pernet, S., Ferrières, X., Cohen, G.: Dissipative terms and local time-stepping improvements in a spatial high order Discontinuous Galerkin scheme for the time-domain Maxwell’s equations. J. Comput. Phys. 227(14), 6795–6820 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Cohen .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cohen, G., Pernet, S. (2017). The Maxwell’s System and Spurious Modes. In: Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations. Scientific Computation. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7761-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7761-2_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7759-9

  • Online ISBN: 978-94-017-7761-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics