Skip to main content

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 60))

  • 1352 Accesses

Abstract

Crystals consist of atoms in a lattice, which are so regularly arrayed as to be diffracted by X-ray. After such an extraordinary regularity of atoms was discovered in crystals by X-ray diffraction, it is quite natural to believe that the building block of crystals should be individual ions, atoms or molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alivisatos A (2000) Naturally aligned nanocrystals. Science 289(5480):736–737

    Google Scholar 

  • Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289(5480):751–754

    Google Scholar 

  • Baski A, Fuchs H (1994) Epitaxial growth of silver on mica as studied by AFM and STM. Surf Sci 313(3):275–288

    Google Scholar 

  • Bishop KJ, Wilmer CE, Soh S, Grzybowski BA (2009) Nanoscale forces and their uses in self‐assembly. Small 5(14):1600–1630

    Google Scholar 

  • Botsaris G, Reid R (1967) Comments on the letter by Glasner and Skurnik entitled “Growth of potassium chloride crystals from aqueous solutions. I. The effect of lead chloride”. J Chem Phys 47(9):3689–3690

    Google Scholar 

  • Cölfen H, Antonietti M (2005) Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Edit 44(35):5576–5591

    Google Scholar 

  • Cölfen H, Antonietti M (2008) Mesocrystals and Nonclassical Crystallization. Wiley, New York, p 73–101

    Google Scholar 

  • Cölfen H, Mann S (2003) Higher‐order organization by mesoscale self‐assembly and transformation of hybrid nanostructures. Angew Chem Int Edit 42(21):2350–2365

    Google Scholar 

  • Clare BW, Talukder G, Jennings PJ, Cornish JCL, Hefter GT (1994) Effect of charge on bond strength in hydrogenated amorphous silicon. J Comput Chem 15(6):644–652. doi:10.1002/jcc.540150608

    Google Scholar 

  • Demichelis R, Raiteri P, Gale JD, Quigley D, Gebauer D (2011) Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat Commu 2:590

    Google Scholar 

  • Eversteijn F (1971) Gas-phase decomposition of silane in a horizontal epitaxial reactor. Philips Res Rep 26(2):134–144

    Google Scholar 

  • Fang Z, Wang H (2008) Densification and grain growth during sintering of nanosized particles. Int Mater Rev 53(6):326–352

    Google Scholar 

  • Feynmann R, Leighton R, Sands M (1970) The Feynman lectures on physics, vol 3. Reading Mass., Addison Wesley, Boston

    Google Scholar 

  • Gebauer D, Cölfen H (2011) Prenucleation clusters and non-classical nucleation. Nano Today 6(6):564–584

    Google Scholar 

  • Gebauer D, Völkel A, Cölfen H (2008) Stable prenucleation calcium carbonate clusters. Science 322(5909):1819–1822

    Google Scholar 

  • Gebauer D, Gunawidjaja PN, Ko JYP, Bacsik Z, Aziz B, Liu L, Hu Y, Bergström L, Tai C-W, Sham T-K, Edén M, Hedin N (2010) Proto-calcite and proto-vaterite in amorphous calcium carbonates. Angew Chem Int Edit 49(47):8889–8891. doi:10.1002/anie.201003220

    Google Scholar 

  • Glasner A, Kenat J (1968) The crystallization of KCl from aqueous solutions in the presence of lead ions. I. A calorimetric study. J Cryst Growth 2(3):119–127

    Google Scholar 

  • Glasner A, Skurnik S (1968) A new mechanism for the crystallization and growth of ionic crystals, with special reference to KCl in the presence of Pb2 + ions. Isr J Chem 6(1):69–72

    Google Scholar 

  • Glasner A, Tassa M (1974a) The thermal effects of nucleation and crystallization of KBr and KCl solutions. II. The heat of nucleation and the supersaturated solution. Isr J Chem 12(4):799–816

    Google Scholar 

  • Glasner A, Tassa M (1974b) The thermal effects of nucleation and crystallization of KBr and KCL solutions. III. The heat of crystallization and the co‐precipitation of lead ions. Isr J Chem 12(4):817–826

    Google Scholar 

  • Herrick CS, Woodruff DW (1984) The homogeneous nucleation of condensed silicon in the gaseous Si‐H‐Cl system. J Electrochem Soc 131(10):2417–2422

    Google Scholar 

  • Hong J-S, Kim C-S, Yoo S-W, Park S-H, Hwang N-M, Choi H-M, Kim D-B, Kim T-S (2013) In-situ measurements of charged nanoparticles generated during hot wire chemical vapor deposition of silicon using particle beam mass spectrometer. Aerosol Sci Tech 47(1):46–51. doi:10.1080/02786826.2012.725959

    Google Scholar 

  • Hwang J, Dubson M (1992) Atomically flat gold films grown on hot glass. J Appl Phys 72(5):1852–1857

    Google Scholar 

  • Hwang N-M, Lee D-K (2010) Charged nanoparticles in thin film and nanostructure growth by chemical vapour deposition. J Phys D: Appl Phys 43(48):483001

    Google Scholar 

  • Hwang NM, Yoon DY (1996) Thermodynamic approach to the paradox of diamond formation with simultaneous graphite etching in the low pressure synthesis of diamond. J Cryst Growth 160(1–2):98–103. doi:http://dx.doi.org/10.1016/0022-0248(95)00549-8

    Google Scholar 

  • Hwang NM, Hahn JH, Yoon DY (1996a) Charged cluster model in the low pressure synthesis of diamond. J Cryst Growth 162(1):55–68

    Google Scholar 

  • Hwang NM, Hahn JH, Yoon DY (1996b) Chemical potential of carbon in the low pressure synthesis of diamond. J of Cryst Growth 160(1–2):87–97. doi:http://dx.doi.org/10.1016/0022-0248(95)00548-X

    Google Scholar 

  • Iijima S, Ajayan PM (1991) Substrate and size effects on the coalescence of small particles. J Appl Phys 70(9):5138–5140. doi:http://dx.doi.org/10.1063/1.348990

    Google Scholar 

  • Kim J, Seto T, Sakiyama K, Kim D (2004) Characterization of low pressure DMA system for the size selection of magnetic nano-particles. Appl Phys A 79(4–6):1497–1499. doi:10.1007/s00339-004-2829-1

    Google Scholar 

  • Koga K, Matsuoka Y, Tanaka K, Shiratani M, Watanabe Y (2000) In situ observation of nucleation and subsequent growth of clusters in silane radio frequency discharges. Appl Phys Lett 77(2):196–198

    Google Scholar 

  • Leite E, Giraldi T, Pontes F, Longo E, Beltran A, Andres J (2003) Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature. Appl Phys Lett 83(8):1566–1568

    Google Scholar 

  • Levlin M, Laakso A, Niemi H-M, Hautojärvi P (1997) Evaporation of gold thin films on mica: effect of evaporation parameters. Appl Surf Sci 115(1):31–38

    Google Scholar 

  • Li D, Nielsen MH, Lee JR, Frandsen C, Banfield JF, De Yoreo JJ (2012) Direction-specific interactions control crystal growth by oriented attachment. Science 336(6084):1014–1018

    Google Scholar 

  • Liao H-G, Cui L, Whitelam S, Zheng H (2012) Real-time imaging of Pt3Fe nanorod growth in solution. Science 336(6084):1011–1014

    Google Scholar 

  • Liu J, Huang X, Li Y, Sulieman K, He X, Sun F (2006) Self-assembled CuO monocrystalline nanoarchitectures with controlled dimensionality and morphology. Cryst Growth Des 6(7):1690–1696

    Google Scholar 

  • Murthy T, Miyamoto N, Shimbo M, Nishizawa J (1976) Gas-phase nucleation during the thermal decomposition of silane in hydrogen. J Cryst Growth 33(1):1–7

    Google Scholar 

  • Niederberger M, Cölfen H (2006) Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys 8(28):3271–3287

    Google Scholar 

  • Nunomura S, Kita M, Koga K, Shiratani M, Watanabe Y (2006) In situ simple method for measuring size and density of nanoparticles in reactive plasmas. J Appl Physs 99(8):083302

    Google Scholar 

  • Persson JL, Andersson M, Holmgren L, Åklint T, Rosén A (1997) Ionization potentials of oxidized copper clusters. Chem Phys Lett 271(1):61–66

    Google Scholar 

  • Qi L, Coelfen H, Antonietti M (2000) Crystal design of barium sulfate using double-hydrophilic block copolymers. Angew Chem Int Edit 39(3):604–607

    Google Scholar 

  • Schapotschnikow P, Pool R, Vlugt TJ (2008) Molecular simulations of interacting nanocrystals. Nano Lett 8(9):2930–2934

    Google Scholar 

  • Seidl M, Perdew JP, Brajczewska M, Fiolhais C (1998) Ionization energy and electron affinity of a metal cluster in the stabilized jellium model: Size effect and charging limit. J Chem Phys 108(19):8182–8189

    Google Scholar 

  • Selwyn GS, Mckillop J, Haller KL, Wu J (1990) Insitu plasma contamination measurements by HeNe laser light scattering: A case study. J Vac Sci Technol A 8(3):1726–1731

    Google Scholar 

  • Seol KS, Tsutatani Y, Fujimoto T, Okada Y, Takeuchi K, Nagamoto H (2001) New in situ measurement method for nanoparticles formed in a radio frequency plasma-enhanced chemical vapor deposition reactor. J Vac Sci Technol B 19(5):1998–2000. doi:10.1116/1.1404979

    Google Scholar 

  • Seto T, Nakamoto T, Okuyama K, Adachi M, Kuga Y, Takeuchi K (1997) Size distribution measurement of nanometer-sized aerosol particles using dma under low-pressure conditions. J Aerosol Sci 28(2):193–206. doi:http://dx.doi.org/10.1016/S0021-8502(96)00071-7

    Google Scholar 

  • Shiratani M, Kawasaki H, Fukuzawa T, Yoshioka T, Ueda Y, Singh S, Watanabe Y (1996) Simultaneous in situ measurements of properties of particulates in rf silane plasmas using a polarization‐sensitive laser‐light‐scattering method. J Appl Phys 79(1):104–109

    Google Scholar 

  • Sunagawa I (1987) Morphology of minerals. Morphology of crystals, part B. Terra Scientific, Tokyo, p 511–587

    Google Scholar 

  • Sunagawa I (1990) Growth and morphology of diamond crystals under stable and metastable conditions. J Cryst Growth 99(1):1156–1161

    Google Scholar 

  • Tang Z, Kotov NA, Giersig M (2002) Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297(5579):237–240. doi:10.1126/science.1072086

    Google Scholar 

  • Teng HH (2013) How ions and molecules organize to form crystals. Elements 9(3):189–194

    Google Scholar 

  • Watanabe Y, Shiratani M, Koga K (2001) Formation kinetics and control of dust particles in capacitively-coupled reactive plasmas. Phys Scripta 2001(T89):29

    Google Scholar 

  • Wen X, Xie Y-T, Mak WC, Cheung KY, Li X-Y, Renneberg R, Yang S (2006) Dendritic nanostructures of silver: facile synthesis, structural characterizations, and sensing applications. Langmuir 22(10):4836–4842

    Google Scholar 

  • Wohlrab S, Pinna N, Antonietti M, Cölfen H (2005) Polymer‐induced alignment of dl‐alanine nanocrystals to crystalline mesostructures. Chem Eur J 11(10):2903–2913

    Google Scholar 

  • Wu JJ, Flagan RC (1987) Onset of runaway nucleation in aerosol reactors. J Appl Phys 61(4):1365–1371

    Google Scholar 

  • Yu S-H, Cölfen H (2004) Bio-inspired crystal morphogenesis by hydrophilic polymers. J Mater Chem 14(14):2124–2147

    Google Scholar 

  • Yuk JM, Park J, Ercius P, Kim K, Hellebusch DJ, Crommie MF, Lee JY, Zettl A, Alivisatos AP (2012) High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336(6077):61–64. doi:10.1126/science.1217654

    Google Scholar 

  • Zhang Q, Liu S-J, Yu S-H (2009) Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future. J Mater Chem 19(2):191–207

    Google Scholar 

  • Zhang Z-p, Sun H-p, Shao X-q, Li D, Yu H, Han M (2005) Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures. Adv Mater 17(1):42–47

    Google Scholar 

  • Zheng H, Smith RK, Jun Y-W, Kisielowski C, Dahmen U, Alivisatos AP (2009) Observation of single colloidal platinum nanocrystal growth trajectories. Science 324(5932):1309–1312

    Google Scholar 

  • Zheng H, Liu Y, Cao F, Wu S, Jia S, Cao A, Zhao D, Wang J (2013) Electron beam-assisted healing of nanopores in magnesium alloys. Sci Rep 3:1920. doi:10.1038/srep01920. http://www.nature.com/articles/srep01920#supplementary-information

  • Ziemann PJ, Liu P, Rao NP, Kittelson DB, McMurry PH (1995) Particle beam mass spectrometry of submicron particles charged to saturation in an electron beam. J Aerosol Sci 26(5):745–756. doi:http://dx.doi.org/10.1016/0021-8502(95)00009-2

    Google Scholar 

  • Zitoun D, Pinna N, Frolet N, Belin C (2005) Single crystal manganese oxide multipods by oriented attachment. J Am Chem Soc 127(43):15034–15035

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nong Moon Hwang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hwang, N.M. (2016). Non-classical Crystallization. In: Non-Classical Crystallization of Thin Films and Nanostructures in CVD and PVD Processes. Springer Series in Surface Sciences, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7616-5_1

Download citation

Publish with us

Policies and ethics