Energy Neutral Phosphate Fertilizer Production Using High Temperature Reactors

  • Nils HaneklausEmail author
  • Ewald Schnug


Increasing global phosphorus (P) needs and energy demands makes an efficient utilization of finite resources such as phosphate rock (PR) obligatory. The anticipated growth in nuclear energy may require the use of uranium (U) from unconventional resources such as PR as future raw material for nuclear reactor fuel. In parallel, increasing amounts of energy will be needed to process lower grade PR resources in order to satisfy rising phosphate fertilizer requirements for global food production. This work assesses the possibility of using the new generation of high temperature reactors (HTRs) for future energy neutral phosphate fertilizer production. Although advantages from an environmental and resource conserving point of view are obvious, challenges associated with the technical implementation and economic feasibility need to be addressed before implementation.


Beneficiation Elemental phosphorus High temperature gas-cooled reactor (HTGR) Phosphate rock Yellow cake 


  1. Anonymous (2011) Rare earth elements. British Geological Survey. Accessed 08 Aug 2013
  2. De Boer MA, Lammertsma K (2012) Scarcity of rare earth elements. Royal Netherlands Chemical Society (KNCV), pp 1–25Google Scholar
  3. EPA (2012) Fertilizer and fertilizer production waste. Accessed 23 Oct 2014
  4. Erdmann L, Graedel TE (2011) Criticality of non-fuel minerals: a review of major approaches and analyses. Environ Sci Technol 45:7620–7630CrossRefPubMedGoogle Scholar
  5. GIF (2014) Generation IV International Forum—VHTR. Accessed 23 Oct 2014
  6. Gupta CK (2003) Chemical metallurgy—principles and practice. Wiley, Weinheim, p 741fGoogle Scholar
  7. Haneklaus N, Reitsma F, Tulsidas H, Tyobeka B, Schnug E, Allelein HJ, Birky BK, Peterson PF, Dyck G, Koshy T (2014a) Using High Temperature Reactors for Energy Neutral Mineral Development Processes—a proposed IAEA Coordinated Research Project. In: Uranium Raw Material for the Nuclear Fuel Cycle (URAM 2014), Vienna, Austria, June 2014Google Scholar
  8. Haneklaus H, Schnug E, Tulsidas H, Reitsma F (2014b) Using high temperature gas-cooled reactors for low grade phosphate rock processing. In: Sustainable Phosphorous Summit (SPS 2014), Montpellier, France, September 2014Google Scholar
  9. Haneklaus N, Schnug E, Tulsidas H, Tyobeka B (2015a) Using high temperature gas-cooled reactors for greenhouse gas reduction and energy neutral production of phosphate fertilizers. Ann Nucl Energy 75:275–282CrossRefGoogle Scholar
  10. Haneklaus N, Reyes R, Lim WG, Tabora EU, Palattao BL, Petrache CP, Vargas EP, Kunitomi K, Ohashi H, Sakaba N, Sato H, Goto M, Yan X, Nishihara T, Tulsidas H, Reitsma F, Tarjan S, Sathrugnan K, Jacimovic R, Al Khaledi N, Birky BK, Schnug E (2015b) Energy neutral phosphate fertilizer production using high temperature reactors: a Philippine case study. Philippine J Sci 144(2):69–79Google Scholar
  11. Haneklaus N, Reitsma F, Tulsidas H (2016) High Temperature Reactors for a new IAEA Coordinated Research Project on energy neutral mineral development processes. Nucl Eng Des.
  12. IAEA (2009) World distribution of uranium deposits (UDEPO) with uranium deposit classification. IAEA-TECDOC-1629Google Scholar
  13. IAEA (2012) Advances in high temperature gas cooled reactor fuel technology. IAEA-TECDOC-1674Google Scholar
  14. Kable (2014) Olympic dam copper–uranium mine, Adelaide, Australia. Mining Technology. Accessed 23 Oct 2014
  15. Knolle F, Birke M, Hassoun R, Jacobs F, Schnug E (2008) Uranium in German mineral water—occurrence and origins. In: De Kok L J and Schnug E (eds) Loads and fate of fertilizer-derived uranium. Backhys Publishers, Leiden, pp 127–134Google Scholar
  16. Kratz S, Schnug E (2006) Rock phosphates and P fertilizers as sources of U contamination in agricultural soils. In: Merkel B and Hasche-Berger A (eds) Uranium in the Environment, Springer, Berlin, pp 57–67Google Scholar
  17. Schnug E, Haneklaus N (2015) Uranium in phosphate fertilizers—review and outlook. In: Merkel B, Arab A (eds) Uranium—past and future challenges. Springer, Heidelberg, pp 123–130Google Scholar
  18. US Geological Survey (2014) Minerals information, mineral commodity summaries. Accessed 19 Sept 2014
  19. Takei M, Kosugiyama S, Mouri T, Katanishi S, Kunitomi K (2006) 高温ガス炉ガスタービン発電システム(GTHTR300)の経済性評価 - Economical Evaluation on Gas-Turbine High Temperature Reactor 300 (GTHTR300) (in Japanese).” 日本原子力学会和文論文誌 5(2):109–117Google Scholar
  20. Voss K (2010) Universität Stuttgart, IER, Vorlesungsmanuskript, Energiewirtschaft und Energieversorgung Band 2, Prof. Dr.-Ing. A. Voß, Dezember 2010Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Nuclear EngineeringUniversity of California, BerkeleyBerkeleyUSA
  2. 2.Faculty 2 Life SciencesTechnical University BraunschweigBrunswickGermany

Personalised recommendations