Skip to main content

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 20))

  • 722 Accesses

Abstract

Implementation of Non-destructive Evaluation (NDE) procedures in concrete structures seems to be the only way towards a safe and economic infrastructure management. Since concrete structures have reasonably ceased to be regarded as maintenance-free, periodic inspection is deemed necessary. Although destructive techniques can provide information on the strength of the material, this is only based on sampling and cannot be performed in a wide basis. Therefore, NDE methodologies, especially with the capability of visualizing the interior of the structure, have been developed and applied in structures to answer a question that cannot be addressed destructively. This chapter focuses on the current trends of elastic wave and general techniques that are used and new trends with some examples of how NDE assists in the identification of damage and maintenance of concrete structures are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggelis, D.G., Shiotani, T., Polyzos, D.: Characterization of surface crack depth and repair evaluation using Rayleigh waves. Cem. Concr. Compos. 31(1), 77–83 (2009)

    Article  Google Scholar 

  2. Aggelis, D.: Wave propagation through engineering materials; assessment and monitoring of structures through non-destructive techniques. Mater. Struct. 46, 519–532 (2013)

    Article  Google Scholar 

  3. Alani, A.M., Aboutalebi, M., Kilic, G.: Integrated health assessment strategy using NDT for reinforced concrete bridges. NDT&E Int. 61, 80–94 (2014)

    Article  Google Scholar 

  4. Balayssac, J.-P., Laurens, S., Arliguie, G., Breysse, D., Garnier, V., Dérobert, X., Piwakowski, B.: “Description of the general outlines of the French project SENSO—Quality assessment and limits of different NDT methods. Constr. Build. Mater. 35, 131–138 (2012)

    Article  Google Scholar 

  5. Breccolotti, M., Bonfigli, M.-F., Materazzi, A.-L.: Influence of carbonation depth on concrete strength evaluation carried out using the SonReb method. NDT&E Int. 59, 96–104 (2013)

    Article  Google Scholar 

  6. Bulavinov, A., et al.: Sampling phased array a new technique for signal processing and ultrasonic imaging. ECNDT, Berlin (2006)

    Google Scholar 

  7. Doctor S.R., Hall, T.E., Reid, L.D.: SAFT–the Evolution of a signal processing technology for ultrasonic testing. NDT Int. 19, 163–167 (1986)

    Google Scholar 

  8. Glaser, S.D., Tolman, A.: Sense of sensing. J. Infrastruct. Syst. 14(1), 4–14 (2008)

    Article  Google Scholar 

  9. Grosse, C.U., Ohtsu, M. (eds.): Acoustic Emission Testing in Engineering—Basics and Applications, 404 p. Springer, Heidelberg (2008). ISBN: 978-3-540-69895-1

    Google Scholar 

  10. Grosse, C.U., Krüger, M., Bachmaier, S.: Wireless sensing techniques for an efficient monitoring of structures and plants. In: Proceedings 35th MPA Seminar “Materials & Components Behavior in Energy & Plant Technology”, pp. 5.1–5.21, Stuttgart (2009)

    Google Scholar 

  11. Grosse, C.U., Glaser, S.D., Krüger, M.: Initial development of wireless acoustic emission sensor motes for civil infrastructure state monitoring. J. Smart Struct. Syst. 6(3), 197–209 (2010)

    Article  Google Scholar 

  12. Grosse, C.U.: Evolution of NDT methods for structures and materials: some successes and failures. In: Non-destructive Testing of Materials and Structures, pp. 3–18, Springer (2012). ISBN: 978-94-007-0723-8

    Google Scholar 

  13. Grosse, C.U.: Wired and wireless structural health monitoring of bridges. In: Proceedings of the 10th Japanese German Bridge Symposium, Muenchen (2014)

    Google Scholar 

  14. Kim, G., In, C.-W., Kim, J.-Y., Kurtis, K.E., Jacobs, L.J.: Air-coupled detection of nonlinear Rayleigh surface waves in concrete—application to microcracking detection. NDT&E Int. 67, 64–70 (2014)

    Article  Google Scholar 

  15. Hatano, H., Mori, E.: Acoustic-emission transducer and its absolute calibration. J. Acoust. Soc. Am. 59(2), 344–349 (1976)

    Article  Google Scholar 

  16. Hsu, N.N., Breckenridge, F.R.: Characterization and calibration of acoustic emission sensors. Mater. Eval. 39, 60–68 (1981)

    Google Scholar 

  17. Hykes, D.L., Hedrick, W.R., Starchman, D.E.: Ultrasound Physics and Instrumentation. Mosby-Year Book, 2. edn (1992)

    Google Scholar 

  18. Iliopoulos, A.N., Devriendt, C., Iliopoulos, S.N., Van Hemelrijck, D.: Continuous fatigue assessment of offshore wind turbines using a stress prediction technique. In: Proceedings of the SPIE 9064, Health Monitoring of Structural and Biological Systems, 90640S (2014). doi:10.1117/12.2045576

  19. Kino, G.S.: Acoustic Waves: Devices, Imaging, and Analog Signal Processing. Prentice Hall (1987)

    Google Scholar 

  20. Krautkrämer, J., Krautkrämer, H.: Werkstoffprüfung mit Ultraschall. Springer, Berlin (1986)

    Book  Google Scholar 

  21. Krüger, M., Grosse, C.U., Reinhardt, H.W.: Structural health monitoring with wireless sensors to enhance sustainability in structural engineering. In: IABSE Symposium Weimar 2007 “Improving Infrastructure Worldwide”. Weimar Symposium Report, vol. 93, pp. 202–211 (2007). ISBN: 978-385748-116-1

    Google Scholar 

  22. Lynch, J.P.: An overview of wireless structural health monitoring for civil structures. Phil. Trans. R. Soc. Lon. A., Math. Phys. Sci. Roy. Soc. Lon. 365(1851), 345–372 (2007)

    Google Scholar 

  23. Maierhofer, C., Reinhardt, H.W., Dobmann, G. (Eds.): Non-destructive Testing Methods. vol. 1 + 2, Woodhead Publishing (2010). ISBN 1-84569-950-5

    Google Scholar 

  24. Manthei, G.: “Characterisation of acoustic emission sensors”, EWGAE Vienna, NDT.net. e-J. Nondestr. Test. 9. http://www.ndt.net

  25. McLaskey, G.C., Glaser, S.D.: Acoustic emission sensor calibration for absolute source measurements. J. Nondestr. Eval. 31(2), 157–168 (2012)

    Article  Google Scholar 

  26. Miller, R.K., McIntire, P. (Eds.): Acoustic emission testing. Nondestructive testing handbook, vol. 5, p. 603. American Society for Nondestructive Testing. 2 edn. (1987)

    Google Scholar 

  27. Mpalaskas, A.C., Vasilakos I., Matikas T.E., Chai, H.K., Aggelis, D.G.: Monitoring of the fracture mechanisms induced by pull-out and compression in concrete. Eng. Fract. Mech. (2014). doi:10.1016/j.engfracmech.2014.07.020

    Google Scholar 

  28. Ono, K., Cho, H., Matsua, T.: “Bar- and plate-wave characterization of AE sensors”, EWGAE Vienna, NDT.net. e-J. Nondestr. Test. 9 (2010). www.ndt.net

  29. Osman, A.: Automated evaluation of three dimensional ultrasonic datasets. PhD Thesis, University Erlangen/Nuernberg, 185 p (2013)

    Google Scholar 

  30. Pieraccini, M.: Monitoring of civil infrastructures by interferometric radar: a review. Sci. World J. Article ID 786961 (2013). http://dx.doi.org/10.1155/2013/786961

  31. Piwakowski, B., Fnine, A., Goueygou, M., Buyle-Bodin, F.: Generation of Rayleigh waves into mortar and concrete samples. Ultrasonics 42(2004), 395–402 (2004)

    Article  Google Scholar 

  32. Proctor, T.M.: Some details on the NBS conical transducer. J. Acoust. Em. 1(3), 173–178 (1982)

    MathSciNet  Google Scholar 

  33. Proctor, T.M.: More recent improvements on the NBS conical transducer. J. Acoust. Em. 5(4), 134–142 (1986)

    Google Scholar 

  34. Raupach, M., Reichling, K., Wiggenhauser, H., Stoppel, M., Dobmann, G., Kurz, J.: BETOSCAN—An instrumented mobile robot system for the diagnosis of reinforced concrete floors. In: Alexander, M. (ed.) Proceedings 2nd International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR). Taylor & Francis, London, pp. 651–655 (2009)

    Google Scholar 

  35. Qi, G., Wayne, S.F.: A framework of data-enabled science for evaluation of material damage based on acoustic emission. J. Nondestr. Eval. (2014). doi:10.1007/s10921-014-0255-7

    Google Scholar 

  36. Rilem: Technical Committee 249-ISC Non destructive in situ strength assessment of concrete (2014). http://rilem.net/gene/main.php?base=8750&gp_id=295

  37. Ritter, J.: “Ultrasonic Phased Array probes for non-destructive examinations using composite crystal technology”, DGZfP, NDTnet—December 1996, vol. 1, no. 12 (1996)

    Google Scholar 

  38. Sbartaï, Z.M., Laurens, S., Elachachi, S.M., Payan, C.: Concrete properties evaluation by statistical fusion of NDT techniques. Constr. Build. Mater. 37, 943–950 (2012)

    Article  Google Scholar 

  39. Schechinger, B.: Schallemissionsanalyse zur Überwachung der Schädigung von Stahlbeton. PhD Thesis, ETH Zürich, Switzerland, IBK-Bericht Nr. 295, vdf Hochschulverlag, 149 p (2006)

    Google Scholar 

  40. Schickert, M.: Progress in Ultrasonic SAFT-Imaging of Concrete. In: NDT-CE, Berlin: Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP), BB 85-CD, vol. 63, 11 p (2003)

    Google Scholar 

  41. Schickert, M., Hillger, W.: Ein Ultraschall-Multikanal-Messsystem mit SAFT-Rekonstruktion für die Abbildung von Betonbauteilen. In: DGZfP-Jahrestagung, Münster, 18.-20.5.2009. Berlin: Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP), CD-ROM, pp. 1–10 (2009)

    Google Scholar 

  42. Schubert, F.: Ausbreitungsverhalten von Ultraschallimpulsen in Beton und Schlussfolgerungen für die zerstörungsfreie Prüfung. PhD Thesis, TU Dresden, 310 p (2000)

    Google Scholar 

  43. Schubert, F., Schechinger, B.: Numerical modeling of acoustic emission sources and wave propagation in concrete. NDT.net. e-J. Nondestr. Test. 7(9), (2002). http://www.ndt.net

  44. Shiotani, T., Momoki, S., Chai, H.-K., Aggelis, D.G.: Elastic wave validation of large concrete structures repaired by means of cement grouting. Constr. Build. Mater. 23(7), 2647–2652 (2009)

    Article  Google Scholar 

  45. Shiotani, T., Oshima, Y., Goto, M., Momoki, S.: Temporal and spatial evaluation of grout failure process with PC cable breakage by means of acoustic emission. Constr. Build. Mater. 48, 1286–1292 (2013)

    Article  Google Scholar 

  46. Shiotani, T., Aggelis, D.G., Makishima, O.: Global monitoring of large concrete structures using acoustic emission and ultrasonic techniques. J. Bridge Eng.-ASCE 14(3), 188–192 (2009)

    Article  Google Scholar 

  47. Shiotani, T., Takada, Y., Watanabe, T., Ohtsu, H.: Damage evaluation of heterogeneous materials by Q-value analysis of AE waveforms, pp. 1–6. JSNDI, Progress in Acoustic Emission XV (2012)

    Google Scholar 

  48. Shiotani, T., Takada, Y., Ishitusuka, K., Momoki, K.: Damage assessment of concrete structures by using ultrasonic Q-value. Engineering Technics Press, Proceedings of Structural Faults & Repair 2014, #1336, CD-ROM (2014)

    Google Scholar 

  49. Shiotani, T., Shigeishi, M., Ohtsu, M.: Damage evaluation of prestressed concrete-piles by acoustic emission. JSCE J. Mater. Conc. Struct. Pavements 48(655), 133–141 (2000)

    Google Scholar 

  50. Tong, J.-H., Chiu, C.-L., Wang, C.-Y., Liao, S.-T.: Influence of Rebars on elastic-wave-based synthetic aperture Focusing technique Images for detecting Voids in concrete Structures. NDT&E Int. (2014). doi:10.1016/j.ndteint.2014.08.001

    Google Scholar 

  51. USGS: Mineral Commodity Summaries, January 2013. United States Geological Survey, pp. 38–39 (2013). http://minerals.usgs.gov/minerals/pubs/commodity/cement/mcs-2013-cemen.pdf

  52. Verma, S.K., Bhadauria, S.S., Akhtar, S.: Review of nondestructive testing methods for condition monitoring of concrete structures. J. Constr. Eng. Article ID 834572 (2013). http://dx.doi.org/10.1155/2013/834572

  53. Weiler, B., Grosse, C.U.: Calibration of Ultrasonic transducers—a comparative study of different methods. Otto Graf J. 6, 153–167 (1995)

    Google Scholar 

  54. Wood, B.R.A., Harris, R.W.: An evaluation of the breaking pencil lead calibration technique, pp. 423–439. Jap. Soc. NDI. Progress in acoustic emission VI, Tokyo (1982)

    Google Scholar 

  55. Yu, T.Y., Büyükötztürk, O.: A far-field airborne radar NDT technique for detecting debonding in GFRP-retrofitted concrete structures. NDT&E Int. 41, 10–24 (2007)

    Article  Google Scholar 

  56. Yun, H.-B., Kim, S.-H., Wu, L., Lee, J.-J.: Development of inspection robots for bridge cables. Sci. World J. Article ID 967508 (2013). http://dx.doi.org/10.1155/2013/967508

  57. Zoidis, N., Tatsis, E., Vlachopoulos, C., Gotzamanis, A., Clausen, J.S., Aggelis, D.G., Matikas, T.E.: Inspection, evaluation and repair monitoring of cracked concrete floor using NDT methods. Constr. Build. Mater. 48, 1302–1308 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian U. Grosse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 RILEM

About this chapter

Cite this chapter

Grosse, C.U., Aggelis, D.G., Shiotani, T. (2016). Concrete Structures. In: Ohtsu, M. (eds) Innovative AE and NDT Techniques for On-Site Measurement of Concrete and Masonry Structures. RILEM State-of-the-Art Reports, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7606-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7606-6_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7605-9

  • Online ISBN: 978-94-017-7606-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics