Levers, Not Springs: How a Spearthrower Works and Why It Matters

  • John C. WhittakerEmail author
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)


A spearthrower, or atlatl, works as a lever to propel a light spear or dart, but there are still alternative theories about the mechanical principles. Howard proposed that atlatls work by extending the time force can be applied to a spear. Others suggest that the flex of the atlatl or the dart, or both, stores energy to propel the dart as from a spring. Both of these theories can be demonstrated to be wrong by a variety of evidence, including slow motion images. Those who believe that spearthrowers work by spring power often see them as ancestral to bows. Because they work by different principles, this is highly unlikely. Understanding how a spearthrower works is important in examining its capabilities and place in the evolution of technology, and both practical experimentation and theoretical understanding are necessary.


Atlatl Spearthrower Bow Lever Mechanical principles Experiment Evolution of technology 


  1. Alexander, B., & Alexander, C. (1988). Les Eskimos: Chasseurs du Grand Nord. Courbevoi.Google Scholar
  2. Baugh, R. A. (1998). Atlatl dynamics. Lithic Technology, 23, 31–41.CrossRefGoogle Scholar
  3. Baugh, R. A. (2003). Dynamics of spear throwing. American Journal of Physics, 71, 345–350.CrossRefGoogle Scholar
  4. Bingham, P. M. (2000). Human evolution and human history: A complete theory. Evolutionary Anthropology, 9, 248–257.CrossRefGoogle Scholar
  5. Brennan, L. A. (1975). Artifacts of ancient America. Harrisburg: Stackpole Books.Google Scholar
  6. Brooks, A., Nevell, L., Yellen, J. E., & Hartman, G. (2006). Projectile technologies of the African MSA: Implications for modern human origins. In E. Hovers & S. L. Kuhn (Eds.), Transitions before the transition: Evolution and stability in the Middle Paleolithic and Middle Stone Age (pp. 233–255). New York: Springer.CrossRefGoogle Scholar
  7. Butler, W. B. (1975). The atlatl: Physics of function and performance. Plains Anthropologist, 20, 105–110.Google Scholar
  8. Cain, D. (2012). Sticks with stones: Controlled experimentation in the use of the weighted atlatl. Unpublished M.A. Thesis, Missouri State University.Google Scholar
  9. Cattelain, P. (1988). Fiches typologiques de l’industrie osseuse préhistorique, cahier II: Propulseurs. Aix en Provence: Publications de l’Université de Provence.Google Scholar
  10. Cattelain, P. (1997). Hunting during the Upper Paleolithic: Bow, spearthrower, or both? In H. Knecht (Ed.), Projectile technology (pp. 213–240). New York: Plenum.CrossRefGoogle Scholar
  11. Cattelain, P. (2000). L’apport de la comparaison ethnographique á la connaisssance et aux tentatives de reconstitution des propulseurs paléolithiques. In C. Bellier, P. Cattelain & M. Otte (Eds.), La chasse dans la préhistoire/ hunting in prehistory (pp. 60–69). Bruxelles: Societé Royale Belge d’Anthropologie et Préhistoire.Google Scholar
  12. Cotterell, B., & Kamminga, J. (1990). The mechanics of preindustrial technology. Cambridge: Cambridge University Press.Google Scholar
  13. Crosby, A. W. (2002). Throwing fire: Projectile technology through history. Cambridge: Cambridge University Press.Google Scholar
  14. Culin, S. (1898). An archaeological application of the Roentgen rays. Free Museum of Science and Art (University Museum), Bulletin, 1, 180–183. Philadelphia: University of Pennsylvania.Google Scholar
  15. Cundy, B. J. (1989). Formal variation in Australian spear and spearthrower technology. Oxford: BAR International Series 546.Google Scholar
  16. Cushing, F. H. (1895). The arrow. American Anthropologist, 8, 307–349.CrossRefGoogle Scholar
  17. Cushing, F. H. (1897). Explorations of ancient Key Dwellers’ remains on the Gulf Coast of Florida. Proceedings of the American Philosophical Society, 35, 329–448.Google Scholar
  18. de Mortillet, A. (1891). Les propulseurs à crochet: Modernes et préhistoriques. Revue de l’École d’Anthropologie de Paris, 1, 241–248.Google Scholar
  19. Farmer, M. F. (1994). The origins of weapons systems. Current Anthropology, 35, 679–681.CrossRefGoogle Scholar
  20. Herbert, W. (1981). Hunters of the Polar North: The eskimos. Amsterdam: Time-Life Books.Google Scholar
  21. Hermann, F. (1967). Völkerkunde Australiens. Mannheim: Bibliographisches Institut.Google Scholar
  22. Hill, M. (1948). The atlatl, or throwing stick, a recent study of atlatls in use with darts of various sizes. Tennessee Archaeologist, 4, 37–44.Google Scholar
  23. Howard, C. D. (1974). The atlatl: Function and performance. American Antiquity, 39, 102–104.CrossRefGoogle Scholar
  24. Howard, C. D. (1976). Atlatl function: A reply to Butler. Plains Anthropologist, 21, 313–314.Google Scholar
  25. Hrdlicka, D. (2003). How hard does it hit? A revised study of atlatl and dart ballistics. The Atlatl, 16, 15–18.Google Scholar
  26. Hutchings, K. (2016). When is a point a projectile? Morphology, impact fractures, scientific rigor, and the limits of inference. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of Stone Age weaponry (pp. 3–12). Dordrecht: Springer.Google Scholar
  27. Iovita, R., & Sano, K. (Eds.). (2016). Multidisciplinary approaches to the study of Stone Age weaponry. Dordrecht: Springer.Google Scholar
  28. Iovita, R., Schönekeß, H., Gaudzinski-Windheuser, S., & Jäger, F. (2016). Identifying weapon delivery systems using macrofracture analysis and fracture propagation velocity: A controlled experiment. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of Stone Age weaponry (pp. 13–27). Dordrecht: Springer.Google Scholar
  29. Kinsella, L. (2013). The bannerstone: A prehistoric prey-specific artifact designed for use in the eastern woodlands of North America. Ethnoarchaeology: Journal of Archaeological, Ethnographic, and Experimental Studies, 5, 24–55.CrossRefGoogle Scholar
  30. Kjelgaard, J. (1951). Fire hunter. New York: Scholastic Book Services.Google Scholar
  31. Lansac, J.-P. (2001). Discussion d’un cadre chronologique pour l’utilization du propulseur et de l’arc. Unpublished M.A. Thesis, University of Bordeaux., Accessed August 20, 2001.
  32. Lyons, R. B. (2004). Atlatl to bow. The Atlatl, 17, 12.Google Scholar
  33. Mason, J. A. (1928). Some unusual spear throwers of ancient America. The Museum Journal (University of Pennsylvania Museum), 19, 290–324.Google Scholar
  34. Mason, O. T. (1885). Throwing sticks in the National Museum. Smithsonian Institution Annual Report for 1884, part 2, 279–290, plates 1–16. Washington: Government Printing Office.Google Scholar
  35. Mason, O. T. (1893). Throwing sticks [letter Sept 15]. Science, 22, 152–153.CrossRefGoogle Scholar
  36. Mason, O. T. (1895). The origins of invention: A study of industry among primitive peoples. London: Walter Scott Ltd. Reprinted (1966, M.I.T. Press, Cambridge).Google Scholar
  37. McCall, G., & Whittaker, J. (2007). Handaxes still don’t fly. Lithic Technology, 32, 195–202.CrossRefGoogle Scholar
  38. Nuttall, Z. (1891). The atlatl or spear-thrower of the ancient Mexicans. Archaeological and Ethnographic Papers of the Peabody Museum, 1, 171–198 (Cambridge).Google Scholar
  39. Patterson, L. W. (1975). The atlatl function: Some comments. The Record (Dallas Archaeological Society), 31, 5–7.Google Scholar
  40. Peets, O. (1960). Experiments in the use of atlatl weights. American Antiquity, 26, 108–110.CrossRefGoogle Scholar
  41. Perkins, W. R. (1992). The weighted atlatl and dart: A deceptively complicated mechanical system. Archaeology in Montana, 31, 65–77.Google Scholar
  42. Perkins, W. R. (1993). Atlatl weights: Function and classification. Bulletin of Primitive Technology, 1, 58–61.Google Scholar
  43. Perkins, W. R. (1995). Effects of stone projectile points as a mass within the atlatl and dart mechanical system. Bulletin of Primitive Technology, 10, 69–72.Google Scholar
  44. Perkins, W. R. (2000a). Archeological, experimental, and mathematical evidence supporting the use of the atlatl as a primary big game procurement weapon of prehistoric Americans. Bulletin of Primitive Technology, 20, 69–72.Google Scholar
  45. Perkins, W. R. (2000b). Effects of stone projectile points as a mass within the atlatl and dart mechanical system and its relationship to the bow and arrow. Indian Artifact Magazine, 19(8–9), 78–79.Google Scholar
  46. Perkins, W. R. (2007). Throw this article. Bulletin of Primitive Technology, 34, 91–92.Google Scholar
  47. Perkins, W. R., & Leininger, P. (1989). The weighted atlatl and dart: A deceptively complicated mechanical system. The Atlatl, 2,1–3; 2,1–4; 3,1–3.Google Scholar
  48. Raymond, A. (1986). Experiments in the function and performance of the weighted atlatl. World Archaeology, 18, 153–177.CrossRefGoogle Scholar
  49. Rots, V. (2016). Projectiles and hafting technology. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of Stone Age weaponry (pp. 167–185). Dordrecht: Springer.Google Scholar
  50. Sano, K., Denda, Y., & Oba, M. (2016). Experiments in fracture patterns and impact velocity with replica hunting weapons from Japan. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of Stone Age weaponry (pp. 29–46). Dordrecht: Springer.Google Scholar
  51. Sattler, H. R. (1993). The earliest Americans, illustrated by Jean Day Zallinger. New York: Clarion Books.Google Scholar
  52. Shea, J. J., & Sisk, M. L. (2010). Complex projectile technology and Homo sapiens dispersal into Western Eurasia. PaleoAnthropology, 2010, 100–122.Google Scholar
  53. Sisk, M. L., & Shea, J. J. (2010). Defining complex projectile technology: A reply to Whittaker. PaleoAnthropology, 2010, L9.Google Scholar
  54. Spangler, D. (1998). The broken atlatl. The Atlatl, 11, 8–9.Google Scholar
  55. Stodiek, U. (1993). Zur Technologie der jungpaläolithischen Speerschleuder: Eine Studie auf der Basis archäologischer, ethnologischer, und experimenteller Erkenntnisse. Tübingen: Verlag Archaeologica Venatoria.Google Scholar
  56. Taylor, H. (2012). The effectiveness of spear throwers. Unpublished paper, University of Manchester.Google Scholar
  57. Thieme, H. (2005). The Lower Paleolithic art of hunting: The case of Schoningen 13 II-4, Lower Saxony, Germany. In C. Gamble & M. Porr (Eds.), The hominid individual in context: Archaeological investigations of Lower and Middle Palaeolithic landscapes, locales, and artefacts (pp. 115–132). London: Routledge.Google Scholar
  58. VanderHoek, R. (1998). The atlatl and dart. Unpublished M.A. Thesis, Department of Anthropology, University of Illinois at Urbana-Champaign.Google Scholar
  59. Weathermon, R. L. (2011). Late Archaic hunter-gatherer perishable technologies in the Black Hills: An investigation of the Crystal Cave location and its culturally modified wood. PhD dissertation, Department of Anthropology, University of Wyoming.Google Scholar
  60. Webb, W. S. (1957). The development of the spearthrower. University of Kentucky Occasional Papers in Anthropology No. 2. Reprinted 1981, Program for Cultural Resource Assessment, Department of Anthropology, University of Kentucky.Google Scholar
  61. Whittaker, J. C. (2010a). Comment on Shea and Sisk’s “Complex projectile technology”. PaleoAnthropology, 2010, L7–L8.Google Scholar
  62. Whittaker, J. C. (2010b). Weapon trials: The atlatl and experiments in hunting technology. In J. Ferguson (Ed.), Designing experimental research in archaeology: Examining technology through production and use (pp. 195–224). Boulder: University of Colorado Press.Google Scholar
  63. Whittaker, J. C. (2011). Cushing’s Key Marco atlatls: Reconstructions and experiments. Ethnoarchaeology: Journal of Archaeological, Ethnographic, and Experimental Studies, 3, 139–161.CrossRefGoogle Scholar
  64. Whittaker, J., & Kamp, K. (2006). Primitive weapons and modern sport: Atlatl capabilities, learning, gender, and age. Plains Anthropologist, 51, 213–221.CrossRefGoogle Scholar
  65. Whittaker, J. C., & Kamp, K. A. (2011). Long and short: Reconstructing Key Marco atlatls. The Atlatl, 24, 21–22.Google Scholar
  66. Whittaker, J., & Maginniss, A. (2006). Atlatl flex: Irrelevant. The Atlatl, 19, 1–3.Google Scholar
  67. Yaroshevich, A., Zaidner, Y., & Weinstein-Evron, M. (2016). Projectile damage and point morphometry at the Early Middle Paleolithic Misliya Cave, Mount Carmel (Isral): Preliminary results and interpretations. In R. Iovita & K. Sano (Eds.), Multidisciplinary approaches to the study of Stone Age weaponry (pp. 119–134). Dordrecht: Springer.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of AnthropologyGrinnell CollegeGrinnellUSA

Personalised recommendations