Skip to main content

Very Sensitive Nanocalorimetry of Small Mass Systems and Glassy Materials

  • Conference paper
  • First Online:
Nanomaterials for Security

Abstract

Nanocalorimetry is a technique that deals with any thermal measurement methods in which either the samples to be studied have a size in the range of the nanometer scale or the measured energies involved are of the order of the nanojoule or below Garden et al (Acta 492:16–28, 2009). In this paper, we show the results of two nanocalorimetric experiments. The first one is related to the measurement of specific heat on ultra-thin small systems (thin films) at low temperature. It is shown that such measurement can be sensitive to less than one monolayer of materials. The second one illustrates the efficiency of calorimetric studies sensitive at the nanoJoule on complex system (polymeric glass) at room temperature. We then discuss the potentiality of these experimental methods in the field of security: the measurement of either a very small mass or very small quantity of energy for the detection of tiny thermal events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garden J-L, Guillou H, Lopeandia AF, Richard J, Heron J-S, Souche GM, Ong FR, Vianay B, Bourgeois O (2009) Thermochim. Acta 492:16–28

    Google Scholar 

  2. Fominaya F, Fournier T, Gandit P, Chaussy J (1997) Rev Sci Instrum 68:4191

    Article  ADS  Google Scholar 

  3. Bourgeois O, Skipetrov SE, Ong F, Chaussy J (2005) Phys Rev Lett 94:057007

    Article  ADS  Google Scholar 

  4. Ong FR, Bourgeois O (2007) Europhys Lett 79:67003

    Article  ADS  Google Scholar 

  5. Poran S, Molina-Ruiz M, Gerardin A, Frydman A, Bourgeois O (2014) Rev Sci Instrum 85:053903

    Article  ADS  Google Scholar 

  6. Garno JP (1978) Rev Sci Instrum 49:1218

    Article  ADS  Google Scholar 

  7. Bourgeois O, Dynes RC (2002) Phys Rev B 65:144503

    Article  ADS  Google Scholar 

  8. Bourgeois O, Frydman A, Dynes RC (2002) Phys Rev Lett 88:186403

    Article  ADS  Google Scholar 

  9. Molina Ruiz M, Lopeandia AF, Pi F, Givord D, Bourgeois O, Rodriguez-Viejo J (2011) Phys Rev B 83:140407(R)

    Google Scholar 

  10. Bourgeois O, André E, Macovei C, Chaussy J (2006) Rev Sci Instrum 77:126108

    Article  ADS  Google Scholar 

  11. Laarraj M, Adhiri R, Ouaskit S, Moussetad M, Guttin C, Richard J, Garden J-L (2015) Rev Sci Instrum 86:115110

    Article  ADS  Google Scholar 

  12. Sullivan P, Seidel G (1968) Phys Rev 173:679

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge technical supports from Nanofab, the Cryogenic and the Electronic facilities and the Pole Capteur Thermométrique et Calorimétrie of Institut Néel for these experiments. Funding for this project was provided by LANEF, Laboratoire d’Excellence, for the senior grant of Aviad Frydman, and by the CNRS (Mission pour l’interdisciplinarité) by means of the call DEFI Instrumentation aux Limites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-L. Garden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Garden, JL. et al. (2016). Very Sensitive Nanocalorimetry of Small Mass Systems and Glassy Materials. In: Bonča, J., Kruchinin, S. (eds) Nanomaterials for Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7593-9_4

Download citation

Publish with us

Policies and ethics